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14.1 Lovász local lemma and the nonvanishing of the independence
polynomial

An often-encountered question in probability is the following: given a collection of events (Ax)x∈X
with P(Ax) = px, when can we say that P(∩x∈XĀx) > 0, i.e. none of the events Ax occur with
positive probability? If the events in question Ax are independent, then this is trivial to answer:

P(
⋂
x∈X

Āx) =
∏
x∈X

(1− px) > 0,

iff px ∈ [0, 1) for all x. When the events are not independent, an answer is given by the Lovász local
lemma (and its variations).

Definition 14.1. We say that G is the dependency graph of (Ax)x∈X if for all x ∈ X, Ax is inde-
pendent of the σ-algebra generated by the collection {Ay | y /∈ Γ∗(x)} (where Γ(x) is the set of
neighbours of x in G and Γ∗(x) := Γ(x) ∪ {x}).

Theorem 14.2 (Lovász local lemma). Let G be the dependency graph for the of events (Ax)x∈X , and
suppose that (rx)x∈X ∈ [0, 1)X such that, for each x,

P(Ax) ≤ rx
∏

y∈Γ(x)

(1− ry).

Then
P (
⋂
x∈X

Āx) ≥
∏
x∈X

(1− rx) > 0.

Definition 14.3. p = {px}x∈X is said to be good for G if for any family of events (Ax)x∈X with
dependency graph G, and P(Ax) ≤ px, we have P(∩x∈XĀx) > 0.

Example 14.4. Lovász local lemma states that p defined by px = rx
∏

y∈Γ(y)(1− ry) is good for G.
This, in particular, implies that if G has maximum degree ∆, then p with px = 1

e∆ is good for G
(see Remark 14.10).

In this note we will see that the conclusion of Lovász local lemma holds for dependency graph G
and probabilities (px)x∈X iff the independent-set polynomial of G is nonvanishing a polydisc of
radii (px)x∈X .
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Definition 14.5. The (multivariate) independence polynomial of G is

ZG(w) :=
∑
X′⊂X

X′ independent

∏
x∈X′

wx.

Since the empty set is vacuously independent, we have ZG(0) = 1. Also note that deg(ZG(w))=
the size of a maximal independent set of G.

Theorem 14.6. p is good for G iff ZG is nonvanishing in the closed polydisc D̄p := {w ∈ CX | |wx| ≤
px,∀x ∈ X}.

To prepare for the proof of this result let us begin with some notations. For all S ⊆ X, let

ZS(w) := ZG(w1S) =
∑
X′⊆S

X′ independent

∏
x∈X′

wx,

where (w1S)x = wx1x∈S . Also let

ZG(w;S) :=
∑
S⊆X′

X′ independent

∏
x∈X′

wx.

We will need the following lemma.

Lemma 14.7. The following are equivalent.

1. ZG(w) > 0 for all −p ≤ w ≤ 0.

2. For any path in (−∞, 0]X connecting 0 and −p, ZG > 0 on that path.

3. ZG(w) 6= 0 on D̄p.

4. For all S ⊆ X, ZS(−p) > 0.

5. For all S ⊆ X, ZG(−p;S)(−1)|S| ≥ 0.

Proof. We will not prove these equivalences here but refer the interested reader to Theorem 2.10
of [SS05] for a full account of the proof. We, however, note in passing that the proof crucially uses
the alternating sign property of Mayer coefficients which we will prove later.

We will also need the following crucial identity.

Proposition 14.8 (Fundamental identity). Fix x0 ∈ X. Then

ZG(w) = ZX\{x0}(w) + wx0ZX\Γ∗(x0)(w).

Proof. The proof uses two simple observations: if X ′ ⊆ X is an independent set, then
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(a) x0 /∈ X ′ ⇒ X ′ ⊆ X \ {x0} and

(b) x0 ∈ X ′ ⇒ X ′ \ {x0} ⊆ X \ Γ∗(x0).

Now we are ready to prove Theorem 14.6.

Proof of Theorem 14.6. “If part.” Suppose p is such that ZG 6= 0 in D̄p. We will show that for any
family (Ax)x∈X with dependency graph G we have

P (
⋂
x∈X

Āx) ≥ ZG(−p) > 0.

To do so we will first construct a family (Bx)x∈X with dependency graph G such that P (∩x∈XB̄x) is
as small as possible, i.e. ZG(−p). Intuitively, this can be done by making the events Bx as disjoint
as possible. With this in mind let us define a probability measure on σ({Bx | x ∈ X}) as follows:

P(
⋂
x∈S

Bx) =

{∏
x∈S px if S is independent in G,

0 otherwise.
(14.1)

Note that, by the inclusion-exclusion formula, for all S ⊆ X,

P(
⋂
x∈S

Bx ∩
⋂
x/∈S

B̄x) =
∑
S⊆T

(−1)|T |−|S|P(
⋂
x∈T

Bx)

=
∑
S⊆T

T independent

(−1)|S|
∏
x∈T

(−px)

= (−1)|S|ZG(−p;S).

By Lemma 14.7 part (5) this is indeed nonnegative for all S. Note that if we take S = ∅, then the
above computation reduces to

P(
⋂
x∈X

B̄x) = ZG(−p).

We now show that (Bx)x∈X is a family minimizing P(∩x∈XB̄x). For S ⊆ X define

PS = P(
⋂
x∈S

Āx) (14.2)

QS = P(
⋂
x∈S

B̄x). (14.3)

We will show by induction on |S| that PS/QS is monotone increasing in S. First of all, by inclusion-
exclusion,

QS =
∑
T⊆S

(−1)|T |P(
⋂
x∈T

Bx)

=
∑
T⊆S

T independent

(−1)|T |
∏
x∈T

px

= ZG(−p1S) = ZS(−p) > 0,
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by Lemma 14.7 part (4). Also, by the fundamental identity, for y /∈ S,

QS∪{y} = ZG(−p1S∪{y})
= ZG(−p1S) + (−py)ZG(−p1S\Γ(y))

= QS − pyQS\Γ(y).

On the other hand,

PS∪{y} = P(
⋂

x∈S∪{y}

Āx)

= P(
⋂
x∈S

Āx)− P(Ay ∩
⋂
x∈S

Āx)

≥ PS − P(Ay ∩
⋂

x∈S\Γ(y)

Āx)

= PS − P(Ay)PS\Γ(y)

≥ PS − pyPS\Γ(y).

Suppose that the monotonicity property holds for subsets of size ≤ |S|. Then

QSPS∪{y} − PSQS∪{y} ≥ py(PSQS\Γ(y) −QSPS\Γ(y)) ≥ 0,

because by induction hypothesis
PS

QS
≥
PS\Γ(y)

QS\Γ(y)
.

This establishes that PS/QS is monotone increasing in S and thus

PX

QX
≥ P∅
Q∅

= 1,

which implies that
P(
⋂
x∈X

Āx) = PX ≥ QX = P(
⋂
x∈X

B̄x) = ZG(−p) > 0.

“Only if part.” If ZG vanishes somewhere in D̄p, we can choose a minimal p′, 0 ≤ p′ ≤ p such
that ZG(−p′) = 0. Construct a family (B′x) via the prescription (14.1) with p replaced by p′. Then
clearly

P(
⋂
x∈X

B̄′x) = ZG(−p′) = 0.

(That this defines a proper probability measure follows from the facts that p′ is minimal, p′ belongs
to the closure of the set of all good p’s for G, and ZG is continuous.) So P(B′x) = p′x ≤ px, but

P(
⋂
x∈X

B̄′x) = 0.

This completes the proof.
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In order to apply Theorem 14.6 we need easily checkable conditions that guarantee the nonvanish-
ing of ZG in some polydisc. The following is a corollary to more general results due to Dobrushin
[Dob96a, Dob96b], Sokal [Sok01]. Notice that the conditions are the same conditions that we find
in Lovász local lemma.

Proposition 14.9. If there exists (rx)x∈X ∈ [0, 1)X such that

Rx ≤ rx
∏

y∈Γ(x)

(1− ry),

then for all w ∈ D̄R,
|ZG(w)| ≥ ZG(−R) ≥

∏
x∈X

(1− rx) > 0.

Proof. The proof uses the fundamental identity in an inductive fashion. In fact, the following more
general result holds under our assumptions: for all S ⊆ T ⊆ X,

ZT (w)

ZS(w)
≥

∏
x∈T\S

(1− rx). (14.4)

To prove this we use induction: suppose that (14.4) holds for all sets strictly smaller than T . Now
note that we can write

ZT (w)

ZS(w)
=

ZT (w)

ZT\{y}(w)

ZT\{y}(w)

ZS(w)
. (14.5)

Using the fundamental identity the first term on the right can be rewritten as

ZT (w)

ZT\{y}(w)
= 1 + wy

ZT\Γ∗(y)(w)

ZT\{y}(w)
(14.6)

Now by induction hypothesis

ZT\Γ∗(y)(w)

ZT\{y}(w)
≥ 1∏

x∈Γ(y)(1− rx)

On the other hand, |wy| ≤ Ry ≤ ry
∏

x∈Γ(y)(1− rx). Therefore, by (14.6), we have∣∣∣∣ ZT (w)

ZT\{y}(w)

∣∣∣∣ ≥ 1− ry

∏
x∈Γ(y)(1− rx)∏
x∈Γ(y)(1− rx)

= 1− ry.

Now this and another application of the induction hypothesis on the second term of the decompo-
sition (14.5) gives us (14.4). Finally, choosing T = X and S = ∅ we obtain the desired claim.

Remark 14.10. If G has maximum degree ∆, set rx = 1
∆+1 . Then we see that |wx| ≤ ∆∆/(∆ +

1)∆+1 for all x implies that ZG(w) ≥ [∆/(∆ + 1)]|X| > 0. Since ∆∆/(∆ + 1)∆+1 ≥ 1
e∆ , it follows

that p, defined by px = 1
e∆ for all x, is good for G.
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14.2 The Mayer expansion

The partition function of a repulsive lattice gas with fugacity vector w = (wx)x∈X and two-particle
Boltzmann factor W : X ×X → [0, 1], where W (x, y) = W (y, x), is given by

ZW (w) =
∞∑
n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

) ∏
1≤i<j≤n

W (xi, xj).

Since ZW (0) = 1, logZW is analytic in a neighborhood of 0 and thus can be expanded into a
convergent power series. This is known as the Mayer expansion:

logZW (w) =
∑
n≥0

cn(W )wn.

The coefficients cn(W ) satisfy an interesting alternating sign property:

(−1)|n|−1cn(W ) ≥ 0. (14.7)

In this section we shall visit a proof (due to Scott and Sokal [SS05]) of this alternating sign property.
The first step is to rewrite the partition function in a suitable way:

ZW (w) =
∞∑
n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

) ∑
G∈Gn

∏
{i,j}∈E(G)

(W (xi, xj)− 1),

where Gn is the set of all simple graphs on n vertices. This follows from the identity∏
1≤i<j≤n

W (xi, xj) =
∑
G∈Gn

∏
{i,j}∈E(G)

(W (xi, xj)− 1).

DefineW(G) :=
∑

x1,...,xn∈X (
∏n

i=1wxi)
∏
{i,j}∈E(G)(W (xi, xj)− 1). Then

ZW (w) =

∞∑
n=0

1

n!

∑
G∈Gn

W(G).

Note that (i)W(∅) = 1, (ii) for two isomorphic graphs G and G′ one hasW(G) = W(G′) and (iii)
if G = G1

⊎
G2 is the disjoint union of two graphs G1 and G2, then W(G) = W(G1)W(G2). We

will now use the exponential formula to express logZG(w) as a power series. Let Cn be the set of all
connected graphs on n vertices. Then we have

logZG(w) =

∞∑
n=0

1

n!

∑
G∈Cn

W(G)

=

∞∑
n=0

1

n!

∑
x1,...,xn∈X

(
n∏

i=1

wxi

) ∑
G∈Cn

∏
{i,j}∈E(G)

(W (xi, xj)− 1)

=
∑
n≥0

 1

n!

∑
x1,...,xn∈X

#{i|xi=x}=nx,∀x

∑
G∈Cn

∏
{i,j}∈E(G)

(W (xi, xj)− 1)

wn.

https://en.wikipedia.org/wiki/Exponential_formula
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Thus
cn(W ) =

1

n!

∑
x1,...,xn∈X

#{i|xi=x}=nx,∀x

∑
G∈Cn

∏
{i,j}∈E(G)

(W (xi, xj)− 1).

In order to analyze cn(W ), let us introduce the connected sum. Let H = (V,E) be a graph, possibly
with loops an multiple edges. Let z = (ze)e∈E be a complex family of edge weights for H. Then the
generating function for the connected spanning subgraphs of G, connected sum for short, is

CH(z) :=
∑
E′⊆E

(V,E′) connected

∏
e∈E′

ze.

Then it is easy to verify that CH satisfies the following deletion-contraction relation:

CH(z) = CH\{e}(z) + zeCH/e(z 6=e).

Now we need a concept known as partitionability.

Let C (resp. T ) be the set of subsets E′ ⊆ E such that (V,E′) is connected (resp. is a tree). Clearly
C is an increasing family of subsets of E with respect to set-theoretic inclusion, and the minimal
elements of C are precisely those of T (i.e. the spanning trees). Then the (anti-)complex C is
partitionable, i.e. there exists a map R : T → C such that R(T ) ⊇ T for all T ∈ T and C =⊎

T∈T [T, R(T )] (disjoint union), where [E1, E2] denotes the Boolean interval {E′ : E1 ⊆ E′ ⊆ E2}.

Lemma 14.11. Let H = (V,E) be a connected graph. Then there exists a map R : T → C such that

(a) R(T ) ⊇ T for all T ∈ T ;

(b) C is the disjoint union of the Boolean intervals [T, R(T )], T ∈ T .

Proof. If H has one vertex and no edges, then T = C = {∅} and the result holds trivially; so
assume henceforth that E 6= ∅. Assign arbitrary weights we > 0 chosen so that no two spanning
trees have equal weight (for example, one can choose the we to be linearly independent over the
rationals). For each E′ ∈ C, let S(E′) be the (unique) minimum-weight spanning tree contained in
E′. (This can be constructed by a greedy algorithm, i.e. start from ∅ and keep adding the lowest-
weight edge in E′ that does not create a cycle.) We then define R(T ) to be the union of all E′

that have S(E′) = T . To verify that this works, we need to show that if S(E1) = S(E2) = T , then
S(E1 ∪ E2) = T ; but this follows easily from the validity of the greedy algorithm.

Given the existence of R, we have the following simple but fundamental identity:

Proposition 14.12 (partitionability identity). Let R : T → C be any map satisfying R(T ) ⊇ T for all
T ∈ T and C is the disjoint union of the Boolean intervals [T, R(T )], for T ∈ T . Then

CH(z) =
∑
T⊆E

(V,T ) tree

∏
e∈T

ze
∑

T⊆E′⊆R(T )

∏
e∈E′\T

ze

=
∑
T⊆E

(V,T ) tree

∏
e∈T

ze
∏

e∈R(T )\T

(1 + ze). (14.8)
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This identity (for one specific choice of R) is due originally to Penrose [Pen67].

Proof of the alternating sign property 14.7. We specialize to the Mayer expansion (14.7) by taking
H = Kn (where n = |n| and Kn denotes the complete graph on n vertices), x = (x1, . . . , xn) and
z(x)ij = W (xi, xj)− 1. Summing over x1, . . . , xn ∈ X with the specified cardinalities we get

cn(W ) =
1

n!

∑
x1,...,xn∈X

#{i|xi=x}=nx,∀x

CKn(z(x)) (14.9)

Since we have a repulsive lattice gas, i.e. W (x, y) ∈ [0, 1], note that zij ≤ 0, for all i, j. Therefore
for any spanning tree T of Kn

(−1)n−1
∏
{i,j}∈T

z(x)ij ≥ 0.

Also clearly ∏
{i,j}∈R(T )\T

(1 + z(x)ij) > 0.

Therefore, in view of the identity (14.8), we have that (−1)n−1CKn(z(x)) ≥ 0, and a fortiori the
representation (14.9) yields

(−1)|n|−1cn(W ) ≥ 0.
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