Math 270: Geometry of PolynomialsFall 2015Lecture 14: The Lovász Local Lemma and the Independence PolynomialLecturer: J. Liu, Y. ZhangScribe: S. S. Mukherjee

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

14.1 Lovász local lemma and the nonvanishing of the independence polynomial

An often-encountered question in probability is the following: given a collection of events $(A_x)_{x \in X}$ with $\mathbb{P}(A_x) = p_x$, when can we say that $\mathbb{P}(\bigcap_{x \in X} \overline{A}_x) > 0$, i.e. none of the events A_x occur with positive probability? If the events in question A_x are independent, then this is trivial to answer:

$$\mathbb{P}(\bigcap_{x \in X} \bar{A}_x) = \prod_{x \in X} (1 - p_x) > 0,$$

iff $p_x \in [0,1)$ for all x. When the events are not independent, an answer is given by the Lovász local lemma (and its variations).

Definition 14.1. We say that G is the dependency graph of $(A_x)_{x \in X}$ if for all $x \in X$, A_x is independent of the σ -algebra generated by the collection $\{A_y \mid y \notin \Gamma^*(x)\}$ (where $\Gamma(x)$ is the set of neighbours of x in G and $\Gamma^*(x) := \Gamma(x) \cup \{x\}$).

Theorem 14.2 (Lovász local lemma). Let G be the dependency graph for the of events $(A_x)_{x \in X}$, and suppose that $(r_x)_{x \in X} \in [0, 1)^X$ such that, for each x,

$$\mathbb{P}(A_x) \le r_x \prod_{y \in \Gamma(x)} (1 - r_y).$$

Then

$$P(\bigcap_{x\in X}\bar{A}_x) \ge \prod_{x\in X} (1-r_x) > 0.$$

Definition 14.3. $\mathbf{p} = \{p_x\}_{x \in X}$ is said to be good for *G* if for any family of events $(A_x)_{x \in X}$ with dependency graph *G*, and $\mathbb{P}(A_x) \leq p_x$, we have $\mathbb{P}(\bigcap_{x \in X} \bar{A}_x) > 0$.

Example 14.4. Lovász local lemma states that \mathbf{p} defined by $p_x = r_x \prod_{y \in \Gamma(y)} (1 - r_y)$ is good for G. This, in particular, implies that if G has maximum degree Δ , then \mathbf{p} with $p_x = \frac{1}{e\Delta}$ is good for G (see Remark 14.10).

In this note we will see that the conclusion of Lovász local lemma holds for dependency graph G and probabilities $(p_x)_{x \in X}$ iff the independent-set polynomial of G is nonvanishing a polydisc of radii $(p_x)_{x \in X}$.

Definition 14.5. The (multivariate) independence polynomial of *G* is

$$Z_G(\mathbf{w}) := \sum_{\substack{X' \subset X \\ X' \text{ independent}}} \prod_{x \in X'} w_x.$$

Since the empty set is vacuously independent, we have $Z_G(\mathbf{0}) = 1$. Also note that $\deg(Z_G(\mathbf{w})) =$ the size of a maximal independent set of *G*.

Theorem 14.6. p is good for G iff Z_G is nonvanishing in the closed polydisc $\overline{D}_{\mathbf{p}} := {\mathbf{w} \in \mathbb{C}^X \mid |w_x| \le p_x, \forall x \in X}.$

To prepare for the proof of this result let us begin with some notations. For all $S \subseteq X$, let

$$Z_S(\mathbf{w}) := Z_G(\mathbf{w}\mathbf{1}_S) = \sum_{\substack{X' \subseteq S \\ X' \text{ independent}}} \prod_{x \in X'} w_x,$$

where $(\mathbf{w1}_S)_x = w_x \mathbf{1}_{x \in S}$. Also let

$$Z_G(\mathbf{w};S) := \sum_{\substack{S \subseteq X' \\ X' \text{ independent}}} \prod_{x \in X'} w_x.$$

We will need the following lemma.

Lemma 14.7. The following are equivalent.

- 1. $Z_G(\mathbf{w}) > 0$ for all $-\mathbf{p} \leq \mathbf{w} \leq 0$.
- 2. For any path in $(-\infty, 0]^X$ connecting 0 and $-\mathbf{p}$, $Z_G > 0$ on that path.
- 3. $Z_G(\mathbf{w}) \neq 0$ on $\overline{D}_{\mathbf{p}}$.
- 4. For all $S \subseteq X$, $Z_S(-\mathbf{p}) > 0$.
- 5. For all $S \subseteq X$, $Z_G(-\mathbf{p}; S)(-1)^{|S|} \ge 0$.

Proof. We will not prove these equivalences here but refer the interested reader to Theorem 2.10 of [SS05] for a full account of the proof. We, however, note in passing that the proof crucially uses the alternating sign property of Mayer coefficients which we will prove later. \Box

We will also need the following crucial identity.

Proposition 14.8 (Fundamental identity). *Fix* $x_0 \in X$. *Then*

$$Z_G(\mathbf{w}) = Z_{X \setminus \{x_0\}}(\mathbf{w}) + w_{x_0} Z_{X \setminus \Gamma^*(x_0)}(\mathbf{w}).$$

Proof. The proof uses two simple observations: if $X' \subseteq X$ is an independent set, then

(a) $x_0 \notin X' \Rightarrow X' \subseteq X \setminus \{x_0\}$ and (b) $x_0 \in X' \Rightarrow X' \setminus \{x_0\} \subseteq X \setminus \Gamma^*(x_0)$.

Now we are ready to prove Theorem 14.6.

Proof of Theorem 14.6. "If part." Suppose **p** is such that $Z_G \neq 0$ in \overline{D}_p . We will show that for any family $(A_x)_{x \in X}$ with dependency graph G we have

$$P(\bigcap_{x\in X}\bar{A}_x) \ge Z_G(-\mathbf{p}) > 0.$$

To do so we will first construct a family $(B_x)_{x \in X}$ with dependency graph G such that $P(\bigcap_{x \in X} \overline{B}_x)$ is as small as possible, i.e. $Z_G(-\mathbf{p})$. Intuitively, this can be done by making the events B_x as disjoint as possible. With this in mind let us define a probability measure on $\sigma(\{B_x \mid x \in X\})$ as follows:

$$\mathbb{P}(\bigcap_{x\in S} B_x) = \begin{cases} \prod_{x\in S} p_x & \text{if } S \text{ is independent in } G, \\ 0 & \text{otherwise.} \end{cases}$$
(14.1)

Note that, by the inclusion-exclusion formula, for all $S \subseteq X$,

$$\mathbb{P}(\bigcap_{x \in S} B_x \cap \bigcap_{x \notin S} \bar{B}_x) = \sum_{S \subseteq T} (-1)^{|T| - |S|} \mathbb{P}(\bigcap_{x \in T} B_x)$$
$$= \sum_{\substack{S \subseteq T \\ T \text{ independent}}} (-1)^{|S|} \prod_{x \in T} (-p_x)$$
$$= (-1)^{|S|} Z_G(-\mathbf{p}; S).$$

By Lemma 14.7 part (5) this is indeed nonnegative for all *S*. Note that if we take $S = \emptyset$, then the above computation reduces to

$$\mathbb{P}(\bigcap_{x\in X}\bar{B}_x)=Z_G(-\mathbf{p}).$$

We now show that $(B_x)_{x \in X}$ is a family minimizing $\mathbb{P}(\bigcap_{x \in X} \overline{B}_x)$. For $S \subseteq X$ define

$$P_S = \mathbb{P}(\bigcap_{x \in S} \bar{A}_x) \tag{14.2}$$

$$Q_S = \mathbb{P}(\bigcap_{x \in S} \bar{B}_x). \tag{14.3}$$

We will show by induction on |S| that P_S/Q_S is monotone increasing in S. First of all, by inclusion-exclusion,

$$Q_S = \sum_{T \subseteq S} (-1)^{|T|} \mathbb{P}(\bigcap_{x \in T} B_x)$$

=
$$\sum_{\substack{T \subseteq S \\ T \text{ independent}}} (-1)^{|T|} \prod_{x \in T} p_x$$

=
$$Z_G(-\mathbf{p}\mathbf{1}_S) = Z_S(-\mathbf{p}) > 0,$$

by Lemma 14.7 part (4). Also, by the fundamental identity, for $y \notin S$,

$$Q_{S\cup\{y\}} = Z_G(-\mathbf{p1}_{S\cup\{y\}})$$

= $Z_G(-\mathbf{p1}_S) + (-p_y)Z_G(-p\mathbf{1}_{S\setminus\Gamma(y)})$
= $Q_S - p_yQ_{S\setminus\Gamma(y)}.$

On the other hand,

$$P_{S\cup\{y\}} = \mathbb{P}(\bigcap_{x\in S\cup\{y\}} \bar{A}_x)$$

= $\mathbb{P}(\bigcap_{x\in S} \bar{A}_x) - \mathbb{P}(A_y \cap \bigcap_{x\in S} \bar{A}_x)$
 $\geq P_S - \mathbb{P}(A_y \cap \bigcap_{x\in S\setminus\Gamma(y)} \bar{A}_x)$
= $P_S - \mathbb{P}(A_y)P_{S\setminus\Gamma(y)}$
 $\geq P_S - p_y P_{S\setminus\Gamma(y)}.$

Suppose that the monotonicity property holds for subsets of size $\leq |S|$. Then

$$Q_S P_{S \cup \{y\}} - P_S Q_{S \cup \{y\}} \ge p_y (P_S Q_{S \setminus \Gamma(y)} - Q_S P_{S \setminus \Gamma(y)}) \ge 0,$$

because by induction hypothesis

$$\frac{P_S}{Q_S} \ge \frac{P_{S \setminus \Gamma(y)}}{Q_{S \setminus \Gamma(y)}}.$$

This establishes that P_S/Q_S is monotone increasing in S and thus

$$\frac{P_X}{Q_X} \ge \frac{P_{\emptyset}}{Q_{\emptyset}} = 1,$$

which implies that

$$\mathbb{P}(\bigcap_{x\in X} \bar{A}_x) = P_X \ge Q_X = \mathbb{P}(\bigcap_{x\in X} \bar{B}_x) = Z_G(-\mathbf{p}) > 0.$$

"Only if part." If Z_G vanishes somewhere in \overline{D}_p , we can choose a minimal \mathbf{p}' , $\mathbf{0} \leq \mathbf{p}' \leq \mathbf{p}$ such that $Z_G(-\mathbf{p}') = 0$. Construct a family (B'_x) via the prescription (14.1) with \mathbf{p} replaced by \mathbf{p}' . Then clearly

$$\mathbb{P}(\bigcap_{x\in X}\bar{B}'_x)=Z_G(-\mathbf{p}')=0.$$

(That this defines a proper probability measure follows from the facts that \mathbf{p}' is minimal, \mathbf{p}' belongs to the closure of the set of all good \mathbf{p} 's for G, and Z_G is continuous.) So $\mathbb{P}(B'_x) = p'_x \leq p_x$, but

$$\mathbb{P}(\bigcap_{x\in X}\bar{B}'_x)=0$$

This completes the proof.

In order to apply Theorem 14.6 we need easily checkable conditions that guarantee the nonvanishing of Z_G in some polydisc. The following is a corollary to more general results due to Dobrushin [Dob96a, Dob96b], Sokal [Sok01]. Notice that the conditions are the same conditions that we find in Lovász local lemma.

Proposition 14.9. If there exists $(r_x)_{x \in X} \in [0,1)^X$ such that

$$R_x \le r_x \prod_{y \in \Gamma(x)} (1 - r_y),$$

then for all $\mathbf{w} \in \overline{D}_R$,

$$|Z_G(\mathbf{w})| \ge Z_G(-\mathbf{R}) \ge \prod_{x \in X} (1 - r_x) > 0.$$

Proof. The proof uses the fundamental identity in an inductive fashion. In fact, the following more general result holds under our assumptions: for all $S \subseteq T \subseteq X$,

$$\frac{Z_T(\mathbf{w})}{Z_S(\mathbf{w})} \ge \prod_{x \in T \setminus S} (1 - r_x).$$
(14.4)

To prove this we use induction: suppose that (14.4) holds for all sets strictly smaller than T. Now note that we can write

$$\frac{Z_T(\mathbf{w})}{Z_S(\mathbf{w})} = \frac{Z_T(\mathbf{w})}{Z_{T\setminus\{y\}}(\mathbf{w})} \frac{Z_{T\setminus\{y\}}(\mathbf{w})}{Z_S(\mathbf{w})}.$$
(14.5)

Using the fundamental identity the first term on the right can be rewritten as

$$\frac{Z_T(\mathbf{w})}{Z_{T\setminus\{y\}}(\mathbf{w})} = 1 + w_y \frac{Z_{T\setminus\Gamma^*(y)}(\mathbf{w})}{Z_{T\setminus\{y\}}(\mathbf{w})}$$
(14.6)

Now by induction hypothesis

$$\frac{Z_{T \setminus \Gamma^*(y)}(\mathbf{w})}{Z_{T \setminus \{y\}}(\mathbf{w})} \ge \frac{1}{\prod_{x \in \Gamma(y)} (1 - r_x)}$$

On the other hand, $|w_y| \le R_y \le r_y \prod_{x \in \Gamma(y)} (1 - r_x)$. Therefore, by (14.6), we have

$$\left|\frac{Z_T(\mathbf{w})}{Z_{T\setminus\{y\}}(\mathbf{w})}\right| \ge 1 - r_y \frac{\prod_{x \in \Gamma(y)} (1 - r_x)}{\prod_{x \in \Gamma(y)} (1 - r_x)} = 1 - r_y.$$

Now this and another application of the induction hypothesis on the second term of the decomposition (14.5) gives us (14.4). Finally, choosing T = X and $S = \emptyset$ we obtain the desired claim. \Box

Remark 14.10. If G has maximum degree Δ , set $r_x = \frac{1}{\Delta+1}$. Then we see that $|w_x| \leq \Delta^{\Delta}/(\Delta + 1)^{\Delta+1}$ for all x implies that $Z_G(\mathbf{w}) \geq [\Delta/(\Delta + 1)]^{|X|} > 0$. Since $\Delta^{\Delta}/(\Delta + 1)^{\Delta+1} \geq \frac{1}{e\Delta}$, it follows that p, defined by $p_x = \frac{1}{e\Delta}$ for all x, is good for G.

14.2 The Mayer expansion

The partition function of a *repulsive* lattice gas with *fugacity* vector $\mathbf{w} = (w_x)_{x \in X}$ and two-particle Boltzmann factor $W : X \times X \to [0, 1]$, where W(x, y) = W(y, x), is given by

$$Z_W(\mathbf{w}) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{x_1,\dots,x_n \in X} \left(\prod_{i=1}^n w_{x_i}\right) \prod_{1 \le i < j \le n} W(x_i, x_j).$$

Since $Z_W(\mathbf{0}) = 1$, $\log Z_W$ is analytic in a neighborhood of $\mathbf{0}$ and thus can be expanded into a convergent power series. This is known as the *Mayer expansion*:

$$\log Z_W(\mathbf{w}) = \sum_{\mathbf{n} \ge \mathbf{0}} c_{\mathbf{n}}(W) \mathbf{w}^{\mathbf{n}}.$$

The coefficients $c_n(W)$ satisfy an interesting alternating sign property:

$$(-1)^{|\mathbf{n}|-1}c_{\mathbf{n}}(W) \ge 0. \tag{14.7}$$

In this section we shall visit a proof (due to Scott and Sokal [SS05]) of this alternating sign property. The first step is to rewrite the partition function in a suitable way:

$$Z_W(\mathbf{w}) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{x_1, \dots, x_n \in X} \left(\prod_{i=1}^n w_{x_i} \right) \sum_{G \in \mathcal{G}_n} \prod_{\{i,j\} \in E(G)} (W(x_i, x_j) - 1),$$

where \mathcal{G}_n is the set of all simple graphs on *n* vertices. This follows from the identity

$$\prod_{1 \leq i < j \leq n} W(x_i, x_j) = \sum_{G \in \mathcal{G}_n} \prod_{\{i, j\} \in E(G)} (W(x_i, x_j) - 1)$$

Define $\mathcal{W}(G) := \sum_{x_1,...,x_n \in X} (\prod_{i=1}^n w_{x_i}) \prod_{\{i,j\} \in E(G)} (W(x_i, x_j) - 1)$. Then

$$Z_W(\mathbf{w}) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{G \in \mathcal{G}_n} \mathcal{W}(G).$$

Note that (i) $\mathcal{W}(\emptyset) = 1$, (ii) for two isomorphic graphs G and G' one has $\mathcal{W}(G) = \mathcal{W}(G')$ and (iii) if $G = G_1 \biguplus G_2$ is the disjoint union of two graphs G_1 and G_2 , then $\mathcal{W}(G) = \mathcal{W}(G_1)\mathcal{W}(G_2)$. We will now use the *exponential formula* to express $\log Z_G(w)$ as a power series. Let C_n be the set of all connected graphs on n vertices. Then we have

$$\log Z_G(w) = \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{G \in \mathcal{C}_n} \mathcal{W}(G)$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \sum_{\substack{x_1, \dots, x_n \in X \\ \#\{i \mid x_i = x\} = n_x, \forall x}} \left(\prod_{i=1}^n w_{x_i}\right) \sum_{G \in \mathcal{C}_n} \prod_{\{i,j\} \in E(G)} (W(x_i, x_j) - 1)$$
$$= \sum_{\mathbf{n} \ge 0} \left(\frac{1}{n!} \sum_{\substack{x_1, \dots, x_n \in X \\ \#\{i \mid x_i = x\} = n_x, \forall x}} \sum_{G \in \mathcal{C}_n} \prod_{\{i,j\} \in E(G)} (W(x_i, x_j) - 1) \right) \mathbf{w}^{\mathbf{n}}.$$

Thus

$$c_{\mathbf{n}}(W) = \frac{1}{n!} \sum_{\substack{x_1, \dots, x_n \in X \\ \#\{i|x_i=x\}=n_x, \forall x}} \sum_{\substack{G \in \mathcal{C}_n \ \{i,j\} \in E(G)}} \prod_{\{W(x_i, x_j) - 1\}} (W(x_i, x_j) - 1).$$

In order to analyze $c_n(W)$, let us introduce the *connected sum*. Let H = (V, E) be a graph, possibly with loops an multiple edges. Let $\mathbf{z} = (z_e)_{e \in E}$ be a complex family of edge weights for H. Then the generating function for the connected spanning subgraphs of G, connected sum for short, is

$$C_H(\mathbf{z}) := \sum_{\substack{E' \subseteq E \\ (V, E') \text{ connected}}} \prod_{\mathbf{e} \in E'} z_e.$$

Then it is easy to verify that C_H satisfies the following deletion-contraction relation:

$$C_H(\mathbf{z}) = C_{H \setminus \{e\}}(\mathbf{z}) + z_e C_{H/e}(\mathbf{z}_{\neq e}).$$

Now we need a concept known as partitionability.

Let \mathcal{C} (resp. \mathcal{T}) be the set of subsets $E' \subseteq E$ such that (V, E') is connected (resp. is a tree). Clearly \mathcal{C} is an increasing family of subsets of E with respect to set-theoretic inclusion, and the minimal elements of \mathcal{C} are precisely those of \mathcal{T} (i.e. the spanning trees). Then the (anti-)complex \mathcal{C} is *partitionable*, i.e. there exists a map $\mathbb{R}: \mathcal{T} \to \mathcal{C}$ such that $\mathbb{R}(T) \supseteq T$ for all $T \in \mathcal{T}$ and $\mathcal{C} = \bigcup_{T \in \mathcal{T}} [T, \mathbb{R}(T)]$ (disjoint union), where $[E_1, E_2]$ denotes the Boolean interval $\{E': E_1 \subseteq E' \subseteq E_2\}$.

Lemma 14.11. Let H = (V, E) be a connected graph. Then there exists a map $R: \mathcal{T} \to \mathcal{C}$ such that

- (a) $\mathsf{R}(T) \supseteq T$ for all $T \in \mathcal{T}$;
- (b) C is the disjoint union of the Boolean intervals $[T, \mathsf{R}(T)], T \in \mathcal{T}$.

Proof. If H has one vertex and no edges, then $\mathcal{T} = \mathcal{C} = \{\emptyset\}$ and the result holds trivially; so assume henceforth that $E \neq \emptyset$. Assign arbitrary weights $w_e > 0$ chosen so that no two spanning trees have equal weight (for example, one can choose the w_e to be linearly independent over the rationals). For each $E' \in \mathcal{C}$, let S(E') be the (unique) minimum-weight spanning tree contained in E'. (This can be constructed by a greedy algorithm, i.e. start from \emptyset and keep adding the lowest-weight edge in E' that does not create a cycle.) We then define R(T) to be the union of all E' that have S(E') = T. To verify that this works, we need to show that if $S(E_1) = S(E_2) = T$, then $S(E_1 \cup E_2) = T$; but this follows easily from the validity of the greedy algorithm.

Given the existence of R, we have the following simple but fundamental identity:

Proposition 14.12 (partitionability identity). Let $R: \mathcal{T} \to C$ be any map satisfying $R(T) \supseteq T$ for all $T \in \mathcal{T}$ and C is the disjoint union of the Boolean intervals [T, R(T)], for $T \in \mathcal{T}$. Then

$$C_{H}(\mathbf{z}) = \sum_{\substack{T \subseteq E \\ (V,T) \text{ tree}}} \prod_{e \in T} z_{e} \sum_{\substack{T \subseteq E' \subseteq \mathsf{R}(T) \\ e \in E' \setminus T}} \prod_{e \in E' \setminus T} z_{e}$$
$$= \sum_{\substack{T \subseteq E \\ (V,T) \text{ tree}}} \prod_{e \in T} z_{e} \prod_{e \in \mathsf{R}(T) \setminus T} (1 + z_{e}).$$
(14.8)

This identity (for one specific choice of R) is due originally to Penrose [Pen67].

Proof of the alternating sign property 14.7. We specialize to the Mayer expansion (14.7) by taking $H = K_n$ (where $n = |\mathbf{n}|$ and K_n denotes the complete graph on n vertices), $\mathbf{x} = (x_1, \ldots, x_n)$ and $\mathbf{z}(\mathbf{x})_{ij} = W(x_i, x_j) - 1$. Summing over $x_1, \ldots, x_n \in X$ with the specified cardinalities we get

$$c_{\mathbf{n}}(W) = \frac{1}{n!} \sum_{\substack{x_1, \dots, x_n \in X \\ \#\{i|x_i=x\}=n_x, \forall x}} C_{K_n}(\mathbf{z}(\mathbf{x}))$$
(14.9)

Since we have a repulsive lattice gas, i.e. $W(x, y) \in [0, 1]$, note that $z_{ij} \leq 0$, for all i, j. Therefore for any spanning tree T of K_n

$$(-1)^{n-1} \prod_{\{i,j\} \in T} z(\mathbf{x})_{ij} \ge 0$$

Also clearly

$$\prod_{\{i,j\}\in\mathsf{R}(T)\backslash T} (1+z(\mathsf{x})_{ij}) > 0$$

Therefore, in view of the identity (14.8), we have that $(-1)^{n-1}C_{K_n}(\mathbf{z}(\mathbf{x})) \ge 0$, and a fortiori the representation (14.9) yields

$$(-1)^{|\mathbf{n}|-1}c_{\mathbf{n}}(W) \ge 0.$$

References

- [Dob96a] RL Dobrushin. Estimates of semi-invariants for the ising model at low temperatures. *Translations of the American Mathematical Society-Series 2*, 177:59–82, 1996.
- [Dob96b] Roland L Dobrushin. Perturbation methods of the theory of gibbsian fields. In *Lectures* on Probability Theory and Statistics, pages 1–66. Springer, 1996.
- [Pen67] Oliver Penrose. Convergence of fugacity expansions for classical systems. In *Statistical mechanics: foundations and applications*, volume 1, page 101, 1967.
- [Sok01] Alan D Sokal. Bounds on the complex zeros of (di) chromatic polynomials and pottsmodel partition functions. *Combinatorics, Probability and Computing*, 10(01):41–77, 2001.
- [SS05] Alexander D Scott and Alan D Sokal. The repulsive lattice gas, the independent-set polynomial, and the lovász local lemma. *Journal of Statistical Physics*, 118(5-6):1151–1261, 2005.