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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

The Geometry of Polynomials, also known as the analytic theory of polynomials, refers the study
of the zero loci of polynomials with complex coefficients (and their dynamics under various trans-
formations of the polynomials) using methods of real and complex analysis. The course will focus
on the fragment of this subject which deals with real-rooted polynomials and their multivariate
generalizations, real stable and hyperbolic polynomials. We will explore this area via its interactions
with questions in combinatorics, probability, and linear algebra, some of which will be algorith-
mically motivated. Specifically, we will be interested in the following kind of question: how are
the properties of a graph/matrix/probability distribution reflected in the zeros of various generat-
ing polynomials associated with it? We begin by presenting two of the simplest examples of this
interplay.

1.1 Poission Binomial Distributions

The distribution of a sum of independent (not necessarily identically distributed) Bernoulli random
variables is called a Poisson Binomial Distribution. A simple question that one might ask about such
a distribution is: is it unimodal? That is, letting

X =

n∑
i=1

Xi

where Xi are independent Bernoullis with EXi = bi ∈ (0, 1), and taking pk = P[X = k], is there
some m such that p0 ≤ p1 ≤ . . . ≤ pm ≥ . . . ≥ pn?

This question is quickly answered by studying the generating function

q(x) :=

n∑
k=0

pkx
k =

n∏
i=1

(bix+ (1− bi)),

of the distribution, where the important point is that the independence of the Xi yields a factor-
ization of q(x) into linear terms. In particular, this factorization immediately implies that q(x) is
real-rooted with strictly negative roots λi := −1−bi

bi
< 0. We now appeal to the Newton Inequalities:

Theorem 1.1 (Newton Inequalities). If
∑n

k=0 akx
k is real-rooted, then(

ak(
n
k

))2

≥ ak−1(
n
k−1
) ak+1(

n
k+1

) , (1.1)
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for k = 1, . . . , n− 1.

This condition is also known as ultra log-concavity (ULC), as after cancelling factorials it reduces to

a2k ≥
(

1 +
1

k

)(
1 +

1

n− k

)
ak−1ak+1,

which is strictly stronger than

a2k ≥ ak−1ak+1 (log-concavity).

It is easy to see that log-concavity implies unimodality, whence the probabilities pk must be uni-
modal.

The Newton Inequalities are a consequence of two simple closure properties of real-rooted polyno-
mials:

• Differentiation. If q(x) is real-rooted so is q′(x). The proof is by Rolle’s theorem.

• Inversion. If q(x) has degree n and is real-rooted, so is r(x) = xnq(1/x), which has the same
coefficients in reverse order. The reason is that the roots of r(x) are the reciprocals of the
nonzero roots of q(x).

Proof of Theorem 1.1. Differentiate the polynomial of interest k − 1 times, reverse the coefficients,
and differentiate n − k − 1 more times to obtain a quadratic polynomial with coefficients equal
to ak−1, ak, and ak+1 times some binomial coefficients. This quadratic must be real-rooted by the
above closure properties, so its discriminant must be nonnegative, which implies the inequalities.
The reader is encouraged to fill in the details as an exercise.

Thus, we have used facts about polynomials to deduce properties of a probability distribution.
However, our proof was entirely reversible, so the implication also goes the other way.

Proposition 1.2. Suppose p(x) =
∑n

k=0 akx
k is a real-rooted polynomial with nonnegative coefficients

and a0 6= 0, p(1) = 1. Then there are independent Bernoulli random variables X1, . . . , Xn such that

ak = P

[
n∑
i=1

Xi = k

]
.

Proof. Factor p(x) as C
∏n
i=1(x+ λi) for some λi > 0. Since p(1) = 1 we must have

C =
1∏n

i=1(1 + λi)
.

Thus, we have

p(x) =

n∏
i=1

(bix+ (1− bi))

for bi = 1
1+λi

∈ (0, 1). Taking Xi with EXi = bi proves the claim.
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This allows us to deduce, for instance, that the coefficients of appropriately normalized real-rooted
polynomials must must decay exponentially. Letting S =

∑n
i=1 EXi and µ = ES, we have by a

version of the Chernoff bound:∑
k>(1+ε)µ

ak = P [S > (1 + ε)µ] < exp(−ε2µ/3), 0 < ε < 1,

∑
k<(1−ε)µ

ak = P[[S < (1− ε)µ] < exp(−ε2µ/2),

(as well as the many other more sophisticated variations of such bounds that exist.)

Remark 1.3 (Mixed Volumes). Newton was trying to characterize the set of real-rooted polyno-
mials via inequalities satisfied by their coefficients. It turns out the ultra log-concavity does not
characterize real-rootedness (i.e., it is necessary but not sufficient). However, it does characterize
another natural class of polynomials, namely: a nonnegative sequence a0, . . . , an is ULC iff there
are convex compact sets A and B in Rn such that

n∑
k=0

akt
k = Vol(tA+B), t ≥ 0

where Vol is the Lebesgue measure in Rn and tA + B is the Minkowski sum. This was shown by
Shephard in 1960; the interested reader is directed to [She60, Gur09].

Remark 1.4 (Edrei’s Equivalence Theorem). A complete set of inequalities characterizing real-
rooted polynomials with nonnegative coefficients was discovered by Edrei [Edr53], who showed
that

∑n
k=0 akx

k is real-rooted if and only if the infinite matrix

Aij = ai−j i, j ∈ N

(where we take ak = 0 if k < 0) is totally positive, i.e., all of its minors are nonegative. Such
sequences are called Polya Frequency Sequences; see e.g. [Pit97] for more details.

Note that a real-rooted polynomial has nonnegative coefficients if and only if all its roots are non-
positive.

Remark 1.5 (Hankel Matrices). There is a fully general characterization of real-rootedness in terms
of positive semidefiniteness of an associated Hankel matrix1, due to Hermite and Sylvester (see
[BPR11][Theorem 4.37]). In particular, a polynomial

p(x) = (x− λ1) . . . (x− λn) =

n∑
k=0

xn−k(−1)kek

is real-rooted if and only if the n× n matrix defined by

Hij = mi+j−2,

1Thanks to Steven Karp for pointing this out.
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where mk =
∑n

i=1 λ
k
i is the kth power sum, is positive semidefinite. Since the power sums can be

written as polynomials in the coefficients due to Newton’s identities:

kek =

k∑
i=1

(−1)i−1ek−imi, (1.2)

this yields a set of inequalities on the coefficients. Positive semidefiniteness can be checked in
strongly polynomial time, so this also gives a strongly polynomial time test for real-rootedness.

1.2 Counting Matchings

We now consider a more combinatorially intricate situation: given a graph G on n vertices, let mk

be the number of matchings2 with k edges in G. For instance, m1 is just the number of edges in
G and mn/2 is the number of perfect matchings. We may ask the same question: the sequence mk

unimodal? The difficulty is that the edges in a random matching are not independently distributed,
so it we cannot simply appeal to the results of the previous section.

This question is answered (along with many others) in an important statistical mechanics paper
from 1972, Theory of Monomer-Dimer Systems, by Heilmann and Lieb. The result is most natural
in the more general context of weighted graphs, so given a graph with nonnegative edge weights
we ≥ 0, e ∈ E, we define

mk :=
∑

matching M,|M |=k

∏
e∈M

we.

The relevant generating function is the matching polynomial:

µG(x) :=

n/2∑
k=0

xn−2k(−1)kmk,

and the main theorem of that paper is the following:

Theorem 1.6 (Heilmann-Lieb [HL72]). For every weighted graph G with nonnegative edge weights,
µG(x) is real-rooted.

Observe that we can write µG(x) = p(−x2) when n is even (since it is a polynomial in x2 with
alternating signs) and µG(x) = xp(−x2) when n is odd (since in this case there are no perfect
matchings), for some polynomial p with nonnegative coefficients equal to the mk. Theorem 1.6
tells us that p is real-rooted, implying that the mk must be unimodal (in fact, a Poisson Binomial
Distribution by Proposition 1.2).

Before proving the theorem, we cursorily review the statistical physics motivation behind studying
such polynomials.

2A matching is a subset of edges such that no two share a common vertex.
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1.2.1 Motivation: Phase Transitions

In Heilmann and Lieb’s model, a a “monomer-dimer configuration” consists of a number of non-
overlapping “dimers” (a matching) and “monomers” (corresponding to unmatched vertices) in a
graph. Such a configuration is entirely determined by the matching, which we will denote by the
variable M . There is an energy functional E(M) (the “Hamiltonian”) which associates each con-
figuration with a nonnegative real energy, and the state of the system is described by a probability
distribution over configurations:

pG(M) =
exp(−βE(M))

Z
,

where β > 0 is a parameter (the “inverse temperature”) and Z is a normalization constant (the
“partition function”).

When E is a sum of local terms involving vertices and pairs of vertices, the above density factors in
certain cases of interest into a product over edges and vertices, and may be rewritten as:

pG(M) =

∏
uv∈M wuvλ

n−2|M |

ZG(λ)
,

for weights wuv > 0 (depending on β), a parameter λ > 0, and

ZG(λ) =
∑
M

∏
uv∈M

wuvλ
n−2|M |,

where |M | is the number of edges in a matching.

The physicists are interested in whether certain macroscopic properties of this distribution, which
correspond to physical observables, vary analytically with the parameter λ. One such observable is
the “free entropy”:

logZG(λ).

For finite n this quantity is analytic whenever λ > 0 since ZG is a polynomial with no positive zeros.
However if one takes a “scaling limit”

zG(λ) = lim
n→∞

1

n
logZGn(λ)

for a sequence of graphs Gn converging in a certain appropriate sense, then this is not necessarily
the case since the complex zeros of the ZGn may have a limit point on the positive real axis. The
main result of [HL72] is that the zeros of ZG all lie on the imaginary axis, so this does not happen.
After performing the change of variable λ = ix, this is just Theorem 1.6. The physical consequence
is that the monomer-dimer model does not exhibit a “phase transition”, which corresponds to non-
analyticity of zG. We refer the interested reader to [HL72, Pem12] for more details.

1.2.2 Proof of the Theorem

We now return to the combinatorial setting. The proof of Theorem 1.6 is based on an important
recurrence satisfied by µG(x), which may actually be seen as a definition of µG(x). Namely, for any
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vertex v ∈ G:
µG(x) = xµG\v(x)−

∑
u∼v

wuvµG\uv(x), (1.3)

where G \ v,G \ uv refer to vertex-deleted subgraphs and u ∼ v denotes vertices adjacent to v in
G. The recurrence is easily established by considering matchings which do not contain v and those
that contain exactly one edge incident to v. The base case is µ∅(x) = 1 for the empty graph.

The key structure exploited by the proof is that of interlacing polynomials.

Definition 1.7. Let p(x) = C1
∏n
i=1(x−λi) and q(x) = C2

∏m
i=1(x− νi) be real-rooted polynomials

of degrees differing by at most 1, with n = deg(p) ≥ deg(q) = m. We say that q interlaces p if

νn ≤ λn ≤ νn−1 ≤ . . . ν1 ≤ λ1 when m = n, or

λn ≤ νn−1 ≤ . . . ν1 ≤ λ1 when m = n− 1.

If all the inequalities are strict, we say q strictly interlaces p.

Proof of Theorem 1.6. Assume that G is a complete graph on n vertices with wuv > 0 for all pairs
u, v ∈ V (we will remove this assumption later by a limiting argument). Assume inductively that
for every such graph H with at most n− 1 vertices:

1. µH(x) is real-rooted with all roots distinct.

2. For every w ∈ H, µH\w(x) strictly interlaces µH(x).

We will show that (1) and (2) must be satisfied by G. Fix a vertex v ∈ G and let λn−1 < . . . < λ1
be the roots of µG\v. We know by induction that each µG\uv strictly interlaces µG\v. Since each of
these polynomials is monic, this implies in particular that µG\uv(λ1) > 0, and since each interval
(λi, λi+1) contains exactly one root of each µG\uv, we deduce that

sign(µG\uv(λi)) = (−1)i+1, i = 1, . . . , n− 1,

for all u ∼ v. Since the weights wuv are positive, the sum

r(x) =
∑
u∼v

wuvµG\uv(x)

must also alternate sign at the λi. Considering the recurrence (1.3), we now have

µG(λi) = λiµG\v(λi)− r(λi) = −r(λi),

so
sign(µG(λi)) = (−1)i.

By the intermediate value theorem, this means that µG has at least one root in each interval
(λi, λi+1), yielding n− 2 distinct roots. Since µG(λ1) < 0 and µG(x)→∞ as x→∞, we must also
have µG(λ0) = 0 for some λ0 > λ1. A similar argument yields another root λn < λn−1, for a total
of n distinct real roots which are strictly interlaced by the roots of µG\v.
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The base case corresponds to a single edge uv, for which µG(x) = x2 − wuv and µG\v(x) = x, for
which the claim is true since wuv > 0.

To handle the case of general nonnegative weights, consider a sequence of graphsG(k) with weights

w(k)
uv =

{
wuv wuv > 0

1/k wuv = 0

converging to the weights in G. Then the polynomials µG(k)(x) converge to µG(x) coefficient-wise.
Since a limit of real-rooted polynomials is either zero or real-rooted (see the next section), we
conclude that µG(x) is real-rooted.

1.3 Continuity of Roots

As in the previous section, we will frequently use the fact that a limit of real-rooted polynomials is
real-rooted. This is a consequence of the more general fact that the roots of a polynomial are con-
tinuous functions of its coefficients (the converse is trivially true). However, some care is required
in formalizing what we mean by this statement, since a sequence of polynomials may converge to
a polynomial of lower degree, which thereby has strictly fewer roots3; for instance, consider the
sequence of polynomials

fn(x) :=
1

n
x2 + x+ 1,

with roots n
2 (−1±

√
1− 4/n). Perhaps the most elementary formulation is the following.

Theorem 1.8. Suppose f1, f2, . . . ∈ C[z] is a sequence of polynomials of bounded degree with no zeros
in an open set Ω ⊂ C. If fn → f coefficient-wise, then either f is identically 0 or f has no zeros in Ω.

Proof. Suppose f is not identically zero and f(w) = 0 for some w ∈ Ω. Choose a ρ > 0 so that the
open disk D = {|z − w| < ρ} is contained in Ω, contains no other zeros of f , and f(z) 6= 0 on ∂D.
Since fn → f uniformly on ∂D (because the degrees are bounded and ∂D is compact), we may
assume by passing to a subsequence that

min
z∈∂D

fn(z) ≥ c > 0 for c :=
1

2
min
z∈∂D

f(z).

Thus, we can conclude that
f ′n(z)

fn(z)
→ f ′(z)

f(z)
(1.4)

uniformly on ∂D.

3This subtlety goes away if we restrict attention to monic polynomials.
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Observe that we can write the number of zeros m(n) of each fn inside D (counting multiplicity) as
an integral of this rational function 4:

1

2πi

∮
∂D

f ′n(z)

fn(z)
dz =

1

2πi

∮
∂D

deg(fn)∑
i=1

1

z − λi(fn)
dz = m(n).

By (1.4) we have ∮
∂D

f ′n(z)

fn(z)
dz →

∮
∂D

f ′(z)

f(z)
dz,

whence the m(n) must converge to some positive integer, a contradiction.

Remark 1.9. The above is a special case of a more general theorem about holomorphic functions
called Hurwitz’s theorem, but we have chosen to present the version above to keep the presentation
as self-contained as possible.

Remark 1.10. For polynomials of bounded degree, coefficient-wise convergence is equivalent to
uniform convergence on compact subsets. This is not so when the degree is unbounded, and we
will use the latter notion of convergence for sequences of unbounded degree.
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