1. True or false (no need for justification). 3 points each.
 (a) If \(f \) has an antiderivative in a domain \(D \) then \(f \) is analytic in \(D \).
 (b) If \(f \) is analytic in a domain \(D \) then it has an antiderivative in \(D \).
 (c) The function \(f(z) = z^2 / \sin(z) \) has a pole at \(z = 0 \).
 (d) If \(f \) and \(g \) are entire and agree on infinitely many points then they must be identical.
 (e) Every entire function has at least one zero.
 (f) There is a function \(f(z) \) such that \(f \) is analytic in \(\mathbb{C} \setminus \{0\} \), has a simple pole at 0, and \(\oint_{|z|=1} f(z)dz = 0 \).
 (g) If \(f \) and \(g \) are two branches of \(\log(z) \) analytic in a domain \(D \), then \(f - g \) must be constant in \(D \).

2. (7 points) Evaluate the integral
 \[
 \oint_{|z|=1} \frac{\cos(z)}{z(z - \pi)^2} dz
 \]
 oriented positively.

3. (7 points) Find the Taylor expansion of \(f(z) = \frac{1}{z} \) at \(z_0 = i + 1 \). What is its radius of convergence?

4. (8 points) Evaluate the integral
 \[
 \oint_{|z|=1} (z + 1)^2 e^{3/z^2} dz,
 \]
 oriented positively.

5. (7 points) Suppose \(f : \mathbb{C} \to \mathbb{C} \) is a function with \(f(1/n) = 1 \) for all positive integers \(n \) and \(f(i) = 2 \). Show that \(f \) cannot be entire.

6. Extra credit (10 points): Assume that \(C \) is a simple closed contour. Show that
 \[
 \oint_{C} \frac{1}{p(z)} dz = 0
 \]
 whenever \(p(z) \) is a polynomial of degree at least two with all zeros contained inside \(C \).