
Math 185-5 Fall 2015, Homework 9

Do not turn in, solutions will be posted on October 28

1. For book problems, see the handwritten pages.

2. Consider the function g(z) = f(z) − w0, and note that g(z) is analytic and nonzero on C. Since
g′(z) = f ′(z) we have by the argument principle,

1

2πi

∮
C

f ′(z)

f(z)− w0
dz = Z,

where Z is the number of zeros of g(z) inside C, which is just the number of solutions of f(z) = w0.

Though this was not asked in the question, observe that this integral is also equal to the winding
number of the contour g(C) (i.e., the contour with parameterization as g(z(t)) if C is parameterized
as z(t)) around zero. This is the same as the winding number of the translated contour g(C) + w0 =
f(C)− w0 + w0 = f(C) around w0.

The point of this question is to say that there is nothing particularly special about zero, and other
values w0 can be handled simply by translating the function.

3. This solution was rewritten on 12/7. The original skipped a couple of steps, and I think this is clearer.

Let Int(C) denote the interior of a simple closed contour and ∂D denote the boundary of a region in
the plane.

The key observation is that f(C) cannot intersect itself, since if it did there would be two points
z1, z2 ∈ C such that f(z1) = f(z2), contradicting that f is 1-1 on C. This means that f(C) is a
simple closed contour, so by the Jordan curve theorem it has an interior and an exterior, separated by
a boundary f(C)1

By the open mapping theorem, this implies that if z ∈ Int(C) then f(z) /∈ f(C), i.e., every interior
point of C gets mapped to an interior point of f(C).

We will now show that f is 1 − 1 in Int(C). Let z0 ∈ Int(C) and w0 = f(z0) ∈ Int(f(C)). Note that
w0 /∈ f(C), so the function

g(z) := f(z)− w0

is nonzero on C, and the image contour g(C) does not pass through zero. We will show that f(z)−w0

has exactly one zero in Int(C), establishing that f is 1-1 there.

Recall that the winding number of a closed contour K around zero can be defined2 as an integral

Wind0(K) =
1

2πi

∮
K

1

z
dz.

1It is actually somewhat tricky to show that the boundary is equal to f(C). Here is one argument. Let S = f(C ∪ Int(C)) =
f(C) ∪ f(Int(C)) be the image of C ∪ Int(C). Since f is continuous and C ∪ Int(C) is closed, the image S is also closed, and
∂S ⊂ S. The open mapping theorem implies that f(Int(C)) ∩ ∂S = ∅, since f(Int(C)) is an open set ∂S is a set of boundary
points. Thus, we must have ∂S ⊆ f(C). Since both f(C) and ∂S are simple closed curves, this implies that ∂S = f(C).

2As we saw in class, by writing the parameterization of K this is equivalent to counting the number of times K winds around
zero. The latter quantity can be calculated by drawing any ray r emanating from zero and subtracting the number of times K
crosses r clockwise from the number of times it crosses r counterclockwise.
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In our case, we are interested in

Wind0(g(C)) =
1

2πi

∮
g(C)

1

w
dw =

1

2πi

∮
C

g′(z)

g(z)
dz.

If 0 is not in the interior then by Cauchy-Goursat this integral, and therefore the winding number,
is zero. If it is in the interior then by Cauchy’s integral formula it is one. In either case, since g
is analytic on and inside C, the argument principle tells us that the number of zeros is equal to the
winding number, so that there is at most one zero of g(z) inside C. This means there is exactly one
solution of f(z)− w0 = 0 inside C, so f must be 1-1.

4. The simplest example is just f(z) = z and g(z) = −z. f(z) is nonzero on the unit circle and has one
zero in its interior, but f(z) + g(z) = 0 everywhere.

A more interesting example is f(z) = eiz and g(z) = −e−iz on the unit circle. f(z) has no zeros in the
interior, but the sum is 2i sin(z), which has one zero.
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