
Math 185-5 Fall 2015, Homework 8 Selected Solutions

1. (a) Observe that the function f(z) = 1
1+z2 has poles at ±i, so it cannot have a Taylor series which

converges in an open disk of radius greater than 1. On the other hand, if the real series in the question
converged in any (−r, r) interval of radius r > 1, then it would converge absolutely, which means that
the same power series in complex z would also converge for all |z| < r. This means it would define an
analytic function in D(0, r). But by the identity theorem, there is only one function analytic in D(0, 1)
which agrees with f(z) = 1

1+z2 for z ∈ (−1, 1). By uniqueneness of Taylor series, this would give a
Taylor series for f(z) convergent in D(0, r) with r > 1, a contradiction.

(b) The function f(z) = exp(1/z2) is not analytic (in fact, it has an essential singularity) at z = 0, so
it cannot have a convergent Taylor series expansion in any neighborhood of z = 0.

4 An example of such a function whose zeros have a limit point at z = 1 is

sin(1/(1− z))

, since it is zero at zn = 1 − 1/nπ. To get the other limit points, we simply rotate the function by
multiples of π/2, in particular the function

f(z) = sin(1/(1− z)) sin(1/(1 + z)) sin(i/(i− z)) sin(i/(i+ z))

is analytic in D(0, 1) and has the required properties.

68.5* All three domains are centered at zero, so we will look for Laurent series about zero. We will construct
these by combining geometric expansions in z (which converge in the open interior of a disk centered
at zero) and geometric expansions in 1/z (which converge in the exterior of a disk centered at zero).

(a) The desired region is |z| < 1, the interior of an open disk, so we expect to have only series in z.
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where the first series converges in |z| < and the second in |z| < 2, so their sum converges in |z| < 1.
Rearranging shows that this is the same as

∑∞
n=0(2−n−1 − 1)zn.

(b) Here we expect to have a series in 1/z (corresponding to the exterior of a disk |z| > 1) and a series
in z/2 (corresponding to the interior |z| < 2). Thus, we choose to expand as:
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where the region of convergence is the region common to both series, namely 1 < |z| < 2.

(c) Here, we expect to have series in 1/z and 2/z only, so we expand:
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The region of convergence of the first part is |z| > 1 and that of the second is |z| > 2, so the sum
converges in |z| > 2, as desired.
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*5ac (a) The singularities occur at the zeros of the denominator. Recall that the zeros of sin(z) are equal
to nπ for integers n (or see section 38). Since sin(z) has a simple zero at each nπ, which is seen for
instance by evaluating the derivative

lim
z→nπ

sin(z)− sin(nπ)

z − nπ
= cos(nπ) = ±1 6= 0

, the denominator has a simple zero at nπ for n 6= −1 and a double zero for n = −1. Thus, the function
has simple poles at z = nπ, n 6= −1 and a double pole at z = −π.

(c) The function f(z) = sin(1− 1/z) is analytic whenever z 6= 0 since it is a composition of functions
analytic at all such z. When z = 0, observe that along the sequence zn = 1/(1 + nπ) converging to
zero, we have

f(zn) = 0.

Thus, limz→0 |f(z)| 6= ∞ so 0 is not a pole. By considering the sequence yn = 1/(1 + inπ), also
converging to zero, we find that

f(yn) = sin(inπ) =
e−nπ − enπ

2i

is unbounded as n → ∞, so zero cannot be a removable singularity. Thus, it must be an essential
singularity.

There are other ways to see this — any method that shows that the limit limz→0 f(z) does not exist
(and is not infinity) will show that it is an essential singularity. For example, you could consider the
sequence xn = 1/(1 − nπ − π/2) converging to zero, for which f(xn) = (−1)n, so the sequence f(xn)
has no limit. This is only possible when 0 is an essential singularity.

6* (a) By problem 3 (or by long division) we have
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Since we are only interested in the principal part, these first few terms will suffice (in particular, since
the most negative power that appears is 1/z, terms of degree 2 or greater cannot contribute to the
principal part). Taking the square, we find
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so the principal part is just 1/z2.

(b) Observe that
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Multiplying by ez + 1 we have
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so the principal part is just 2/z.

7 True or False.

(a) Suppose f(z) is analytic in D(0, 1) and {zn} is a sequence of points in D(0, 1) with limn→∞ zn = 0
and f(zn) = sin(zn) for all n. Then f must equal sin(z) in D(0, 1).

TRUE. Both sin(z) and f are analytic in D(0, 1) and agree on a sequence with a limit point in
D(0, 1), so by the identity theorem they must be the same.
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(b) There exists an f(z) analytic in D(0, 1) and a sequence zn → 0 contained in D(0, 1) such that
f(zn) = n for all n.

FALSE. This implies that limn→∞ |f(zn)| = ∞, so f cannot be continuous (and therefore can’t
be analytic) at 0.

(c) There exists an f(z) analytic in D(0, 1) and a sequence zn → 0 in D(0, 1) such that f(zn) = zn
for even n and f(zn) = 0 for odd n.

The identically zero sequence trivially has this property, so I should have said nontrivial sequence.

For any nontrivial sequence (i.e., zn 6= 0) , this is FALSE. By considering the odd points at which
f(zn) = 0, the identity theorem says that the only function analytic in D(0, 1) with this property
is the zero function. But then f(zn) 6= zn at the even points.

(d) If f and g have a pole at z0 then f + g has a pole at z0.

FALSE. You could have f = −g.

(e) If f has a pole at z0 and g has an essential singularity at z0 then f +g has an essential singularity
at z0.

TRUE. Adding the Laurent series, the sum will still have infinitely many terms in the principal
part (as there is no way to cancel them with the finitely many terms from f).

(f) If f has a pole of order m at z0 and g has a zero of order n ≤ m at z0 then f · g has a removable
singularity at z0.

FALSE. Take n = 1 and m = 2. Then fg has a pole of order 1 at z0.

(g) If f(z) has a pole of order m at z0 then f ′(z) has a pole of order m+ 1 at z0.

TRUE. Differentiate f(z) = g(z)/(z − z0)m.

10* Let us handle the case k = 1 first. Suppose f is analytic in D with a single zero z1 of order m1. Then

the function g1(z) = f(z)
(z−z1)m1

is analytic in D\{z1}, and undefined (i.e., has an isolated singularity) at

z1. However, this singularity at z1 is removable since limz→z1
f(z)

(z−z1)m1
exists and is nonzero (because

f(z) has a zero of order m1). Remove the singularity by defining g1(z) at z1 as

g1(z1) = lim
z→z1

fracf(z)(z − z1)m1 .

Now g1(z) is analytic in D and has the required properties.

For the general case, applying the above argument yields a function g1(z) analytic in D with f(z) =
g1(z)(z − z1)m1 and zeros z2, . . . , zk of orders m2, . . . ,mk. By induction we can factorize g1(z) as
g(z)(z − z2)m2 . . . (z − zk)mk , so we are done.

One may also prove this directly by observing that:

g(z) =
f(z)

(z − z1)m1 . . . (z − zk)mk

has removable singlularities at z1, . . . , zm, since for each zi one has f(z) = hi(z)(z − zi)mi for analytic
hi(zi) 6= 0 in a neighborhood of zi, implying that the limit

lim
z→zi

f(z)

(z − zi)mi
6= 0.

Redefining

g(zi) = lim
z→zi

f(z)

(z − z1)m1 . . . (z − zk)mk

at these singularities removes them and yields a function analytic in D with the desired properties.
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The point of this question was to emphasize that removable singularities can simply be removed by
redefining the function at them to obtain true analytic functions. The reason, as discussed in class, is
that the redefined function’s Laurent series is actually a Taylor series, so it is analytic at the (removed)
singularity. Moreover, the redefined function agrees with the original function at all points other than
the singularity.

11* The Casorati-Weierstrass theorem (section 84) says that if a function f has an essential singularity at
z0, then for every ε > 0, δ > 0, and w, there is a point z ∈ Do(z0, δ) such that |f(z) − w| < ε, i.e.,
f comes arbitrarily close to every point in the complex plane in every punctured neighborhood of z0.
We will use this fact to rule out the possiblities that ef(z) has a removable singularity or a pole at
z0. First observe that g(z) = ef(z) cannot be bounded in any punctured neighborhood of z0, since it
comes arbitrarily close to every integer (say) in every punctured neighborhood of z0. Thus, g cannot
have a removable singularity at z0. On the other hand, it also comes arbitrarily close to zero in every
punctured neighborhood, so limz→z0 |g(z)| 6= ∞. Thus g(z) cannot have a pole. The only remaining
possibility is an essential singularity.
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