57.4* Let \(h(s) = s^3 + 2s \) and note that \(h \) is entire. When \(z \) is inside \(C \), Cauchy’s integral formula for the second derivative implies:

\[
h''(z) = \frac{2!}{2\pi i} \oint_C \frac{h(s)}{(s-z)^3} \, ds = \frac{g(z)}{i\pi},
\]

so we must have

\[
g(z) = i\pi h''(z) = i\pi (3 \cdot 2 \cdot z + 0) = 6\pi iz,
\]

as suggested.

When \(z \) is outside \(C \), the function \(h(s)/(s-z)^3 \) is analytic on and inside \(C \), since \((s-z)^3 \neq 0\) on and inside \(C \), whence Cauchy-Goursat implies that the integral is zero.

2* Let \(C' \) be a circle centered at \(z \) contained in the interior of \(C \). Since the integrand is analytic in the region between \(C \) and \(C' \), the deformation theorem allows us to replace \(C \) by \(C' \) without changing the integral. So assume \(C \) is a circle centered at \(z \).

Assume \(n \geq 1 \) and assume by induction that we have already proved:

\[
f^{(n-1)}(z) = \frac{(n-1)!}{2\pi i} \oint_C \frac{f(s)}{(s-z)^n} \, ds.
\]

Thus, we may write

\[
\lim_{\Delta z \to 0} \frac{f^{(n-1)}(z + \Delta z) - f^{(n-1)}(z)}{\Delta z} = \frac{n!}{2\pi i} \oint_C \frac{f(s)}{(s-z)^{n+1}} \, ds - \frac{n \cdot (n-1)!}{2\pi i} \oint_C \frac{f(s)}{(s-z)^n} \, ds.
\]

We now use a trick to avoid messy algebraic calculations — replacing differences by integrals. Observe that

\[
\frac{d}{dw} \frac{1}{(s-w)^n} = \frac{n}{(s-w)^{n+1}}.
\]

Thus, the fundamental theorem of calculus tells us that:

\[
\int_z^{z+\Delta z} \frac{n}{(s-w)^{n+1}} \, dw = \int_z^{z+\Delta z} \frac{d}{dw} \frac{1}{(s-w)^n} \, dw = \frac{1}{(s-z-\Delta z)^n} - \frac{1}{(s-z)^n}.
\]

Even more simply, we may rewrite the second integrand as:

\[
\frac{1}{(s-z)^{n+1}} = \frac{1}{\Delta z} \int_z^{z+\Delta z} \frac{1}{(s-z)^{n+1}} \, dw,
\]
where the integrand is merely a constant with respect to w. Substituting these into our limit of interest, we get:

$$\lim_{\Delta z \to 0} \frac{1}{2\pi i} \oint_C f(s) \left(\int_z^{z+\Delta z} \frac{n}{(s-w)^{n+1}} \, dw - \frac{n \cdot (n-1)!}{2\pi i} \oint_C f(s) \frac{1}{\Delta z} \int_z^{z+\Delta z} \frac{1}{(s-z)^{n+1}} \, dw \right) \, ds$$

$$= \lim_{\Delta z \to 0} \frac{n!}{2\pi i \Delta z} \oint_C f(s) \left(\int_z^{z+\Delta z} \frac{1}{(s-w)^{n+1}} \, dw - \int_z^{z+\Delta z} \frac{1}{(s-z)^{n+1}} \, dw \right) \, ds$$

We now apply the same trick again to the integrand with respect to dw, namely, observing that

$$\frac{d}{d\zeta} \frac{1}{(s-\zeta)^{n+1}} = \frac{(n+1)}{(s-\zeta)^{n+2}},$$

and therefore

$$\frac{1}{(s-w)^{n+1}} - \frac{1}{(s-z)^{n+1}} = \int_w^w \frac{(n+1)}{(s-\zeta)^{n+2}} \, d\zeta,$$

we can write the above as

$$\lim_{\Delta z \to 0} \frac{n!}{2\pi i \Delta z} \oint_C f(s) \int_z^{z+\Delta z} \int_w^w \frac{n+1}{(s-\zeta)^{n+2}} \, d\zeta \, dw \, ds.$$

We will now show that this limit is zero by applying the ML estimate several times. Let $\max_{s \in C} |f(s)| = M$, and let m be the minimum distance between z and $s \in C$, so $|z-s| \geq m$ for all $s \in C$ (where the max/min exist by continuity and compactness of C). Assume without loss of generality that $|\Delta z| < m/2$. Observe that $w \in [z, z + \Delta z]$ and $\zeta \in [z, w]$ and $s \in C$, so in particular we know that $|s-\zeta| \geq m/2$ for all $s \in C$ and $\zeta \in [z, z + \Delta]$. Applying the ML estimate three times, starting from the outermost integral, gives:

$$\left| \oint_C f(s) \int_z^{z+\Delta z} \int_w^w \frac{n+1}{(s-\zeta)^{n+2}} \, d\zeta \, dw \right| \leq \text{length}(C) \max_{s \in C} |f(s)| \max_{s \in C} \left| \int_z^{z+\Delta z} \int_w^w \frac{n+1}{(s-\zeta)^{n+2}} \, d\zeta \, dw \right|$$

$$\leq \text{length}(C) \cdot M \max_{s \in C} \left(\text{length}([z, z + \Delta z]) \max_{w \in [z, z + \Delta z]} \left| \int_w^w \frac{n+1}{(s-\zeta)^{n+2}} \, d\zeta \right| \right)$$

$$\leq \text{length}(C) \cdot M \cdot \max_{s \in C} \left(\text{length}([z, z + \Delta z]) \max_{w \in [z, z + \Delta z]} \text{length}([z, w]) \max_{\zeta \in [z, w]} \left| \frac{n+1}{(s-\zeta)^{n+2}} \right| \right)$$

$$\leq \text{length}(C) \cdot M \cdot |\Delta z| \cdot |\Delta z| \cdot \frac{n+1}{(m/2)^{n+2}}.$$
When \(n \geq 0 \) the integrand is a polynomial, which is analytic on and inside the contour, so by Cauchy-Goursat the integral is zero. Otherwise, for \(n = -k \) where \(k \) is a positive integer we have:

\[
\oint_{|z|=1} z^n(1-z)^m \, dz = \oint_{|z|=1} \frac{(1-z)^m}{(z-0)^k} = \frac{2\pi i}{(k-1)!} f^{(k-1)}(0)
\]

by Cauchy’s integral formula, since \(f(z) = (1-z)^m \) is analytic on and inside \(|z| = 1 \) and 0 is contained in its interior. The derivatives are:

\[
f(0) = 1, \\
f^{(1)}(0) = m(1-0)^{m-1}(-1) = -m, \\
f^{(2)}(0) = m(m-1)(1-0)^{m-2}(-1)^2 = m(m-1), \\
\ldots, f^{(k-1)}(0) = (-1)^{k-1} \frac{m!}{(m-(k-1))!}.
\]

When \(k-1 > m \), i.e. when \(n < -m - 1 \), the derivative is zero since \(f(z) \) is a polynomial of degree \(m \). Thus, the integral is equal to 0 for \(n \geq 0 \) or \(n < -m - 1 \), and

\[
2\pi i(-1)^{-n-1} \frac{m!}{(-n-1)!((m-(-n-1))!} = 2\pi i(-1)^{-n-1} \left(\frac{m}{-n-1} \right),
\]

otherwise.

The formula cannot directly be applied because the function \(\text{Re}(z) \) is not analytic on and inside the contour \(|z| = 1 \), which we will call \(C \). However, since \(\text{Re}(z) = (z+\overline{z})/2 = (z+z^{-1})/2 \) whenever \(|z| = 1 \), the value of the integral (which only depends on the values of \(\text{Re}(z) \) at points on \(C \)) is equal to

\[
\oint_C \frac{1/2(z+z^{-1})}{z-1/2} \, dz = \frac{1}{2} \oint_{|z|=1} \frac{z^2+1}{z(z-1/2)} \, dz.
\]

The integrand has singularities at \(z = 0 \) and \(z = 1/2 \). Let \(C_1 \) and \(C_2 \) be positively oriented circles of radius 1/4 centered at 0 and 1/2 respectively, and observe that since \(C_1 \) and \(C_2 \) are contained in the interior of \(C \) and the integrand is analytic in the region between them and \(C \), we have by the deformation theorem:

\[
\oint_C \frac{z^2+1}{z(z-1/2)} \, dz = \oint_{C_1} \frac{z^2+1}{z(z-1/2)} \, dz + \oint_{C_2} \frac{z^2+1}{z(z-1/2)} \, dz = \oint_{C_1} \frac{g(z)}{z} \, dz + \oint_{C_2} \frac{h(z)}{z} \, dz,
\]

where \(g(z) = \frac{z^2+1}{z-1/2} \) is analytic on and inside \(C_1 \) and \(h(z) = \frac{z^2+1}{z} \) is analytic on and inside \(C_2 \). Thus, by Cauchy’s integral formula, the above integral is equal to

\[
2\pi i g(0) + 2\pi i h(1/2) = 2\pi i(-2 + 5/2) = \pi i,
\]

and the original integral is just \(\pi i/2 \).