The questions marked with a * are graded.

2* We have
\[\frac{1}{z^2 - 1} = \frac{1}{(z - 1)(z + 1)} = \frac{1}{2} \left(\frac{1}{z - 1} - \frac{1}{z + 1} \right), \]
so
\[\oint_{|z|=2} \frac{1}{z^2 - 1} \, dz = \frac{1}{2} \oint_{|z|=2} \frac{1}{z - 1} - \frac{1}{z + 1} \, dz = \frac{1}{2} \oint_{C_1} \frac{1}{z - 1} - \frac{1}{2} \oint_{C_2} \frac{1}{z + 1} \, dz, \]
where \(C_1, C_2 \) are positively oriented circles of radius \(1/2 \) centered at \(1 \) and \(-1 \) respectively, by the deformation theorem. By the fundamental integral, both of the latter integrals are equal to \(2\pi i \), so the answer is
\[\frac{2\pi i - 2\pi i}{2} = 0. \]

More concretely, we may write
\[\oint_{C_1} \frac{1}{z - 1} \, dz = \int_0^{2\pi} \frac{1}{1 + (1/2)e^{it} - 1(1/2)ie^{it}} \, dt = \int_0^{2\pi} i \, dt = 2\pi i, \]
and similarly for \(C_2 \).

3* Suppose \(z \notin C \). and let \(m = \min_{s \in C} |z - s| \), and \(M = \max_{s \in C} |g(s)| \) where the minimum and maximum are achieved because \(C \) is compact and \(|z - s| \) and \(g(s) \) are continuous.

The difference quotient is
\[\frac{1}{\Delta z} \int_C g(s) \left(\frac{1}{s - z - \Delta z} - \frac{1}{s - z} \right) \, ds = \int_C \frac{g(s)}{(s - z - \Delta z)(s - z)} \, ds. \]

We will show that
\[\lim_{\Delta z \to 0} \int_C g(s) \left(\frac{1}{(s - z - \Delta z)(s - z)} - \frac{1}{(s - z)^2} \right) = 0, \]
which will complete the proof. Fix \(\epsilon > 0 \). The magnitude of the integrand for \(s \in C \) is at most
\[|g(s)| \frac{1}{|s - z|} \frac{|\Delta z|}{|s - z - \Delta z||s - z|} \leq M \frac{\Delta}{m^2 (|s - z| - |\Delta z|)} \leq M \frac{\Delta}{m^2 m/2}, \]
whenever \(|\Delta z| \leq m/2\). Thus, by the ML estimate, the integral is at most
\[\frac{2M\Delta z}{m^3} \cdot \text{length}(C). \]

Since this is less than \(\epsilon \) whenever \(|\Delta z| < \frac{em^3}{2M \cdot \text{length}(C)} \), we are done.
4* There are several ways to do this. One is to observe that the principal branch \(\text{Log}(z) \) is analytic on \(D(1,1) = \{ z : |z - 1| < 1 \} \), so in particular \(\text{Log}(f(z)) \) is analytic on \(D \) since \(f(z) \in D(1,1) \). By the chain rule its derivative is

\[
\frac{1}{f(z)} \cdot f'(z),
\]

so the integrand has an antiderivative in \(D \). Thus the integral is zero for all closed \(C \) contained in \(D \).

Another proof is that \(f(z) \neq 0 \) on \(D \) since \(|f(z) - 1| < 1 \), and \(f'(z) \) is analytic on \(D \) (a consequence of the Cauchy Integral Formula). Thus the quotient \(f'(z)/f(z) \) is analytic on \(D \). Since \(D \) is simply connected, the Cauchy Goursat theorem implies that the integral is zero for every closed \(C \).

Note that the first proof does not use the fact that \(D \) is simply connected.

5* Since \(D \) does not contain the origin \(f(z) = 1/z \) is analytic in \(D \). Since \(D \) is simply connected, the Cauchy-Goursat theorem tells us that \(f \) has an antiderivative \(F(z) \) with \(F'(z) = f(z) = 1/z \) in \(D \). Since \(e^{-z} \) and \(z \) are entire, we may take a composition and a product to conclude that

\[
G(z) = ze^{-F(z)}
\]

is analytic in \(D \). By the chain rule its derivative is

\[
(ze^{-F(z)})' = e^{-F(z)} + z(-e^{-F(z)})F'(z) = e^{-F(z)} + ze^{-F(z)} \cdot (1/z) = 0.
\]

Thus \(ze^{-F(z)} = c \) for some constant \(c \) for all \(z \in D \). Moreover, \(c \neq 0 \) since \(e^{-F(z)} \neq 0 \) and \(z \) is not identically zero in \(D \), which is a nonempty open set. Thus \(e^{F(z)} = c^{-1}z \) in \(D \), and

\[
e^{F(z)+\text{log}(c)} = cz/c = z,
\]

so by the definition of the logarithm as an inverse function, \(F(z) + \text{log}(c) \) (where \(\text{log}(c) \) is any branch whose domain contains \(c \)) is a branch of \(\text{log}(z) \) which is analytic in \(D \).