
Math 185-5 Fall 2015, Homework 11 Solutions

1. Observe that f(z) = z−2π/ sin(πz) has simple poles at the nonzero integers since sin(πz) has simple
zeros there, and a triple pole at z = 0. The residues at the nonzero poles are:

Res(f, n) = lim
z→n

π(z − n)

z2 sin(π(z − n) + nπ)
=

(−1)n

n2
,

which are exactly the summands of the series we are interested in.

As in class, the goal is to find contours which enclose poles corresponding to the partial sums SN =∑N
n=1(−1)2/n2 as well as the pole at zero, and on which the function is small (ideally vanishing) so

we can easily compute the integral. The same contours BN , given by the axis-aligned box with sides
through the points ±N/2,±iN/2 where N is an odd integer, will work.

Let us show that

|1/ sin(πz)| = 2

|eiπz − e−iπz|
< 4

whenever z ∈ BN for N > 2. Let z = x+ iy. There are two cases:

(1) y = ±N/2. Here |e−iπ(x+iy)| = eπy > eπ and eiπ(x+iy) = e−πy < e−π since N/2 > 1. Thus, the
quantity we are interested in is bounded by

2

eπ − e−π
< 4.

The case y = −N/2 is completely analogous with the roles of y and −y switched.

(2) x = N/2. Notice that eiz − e−iz = e−πyeiπx − eπye−iπx. Since x is a half-integer both eiπx and

e−iπx = eiπx are pure imaginary with the opposite sign. Thus, we have

|eiπz − e−iπz| = |e−πy + eπy| ≥ 1,

so we are done.

As a result we have |f(z)| < 4π/|z|2 ≤ 4π/N2 on BN whenever N > 2 and N is odd. Thus, we have
for every odd N by the ML estimate:

2

(N−1)/2∑
n=1

Res(f, n) + Res(f, 0) = 2πi

∮
BN

f(z)dz ≤ 2πi · 4N · 4π/N2 = O(1/N).

(The factor 2 appears because every residue is counted twice, once at n and once at −n).

Taking a limit as N →∞ (by a sequence of odd integers), we have

2

∞∑
n=1

(−1)n/n2 + Res(f, 0) = 0,

so the value of the infinite sum is −Res(f, 0)/2.
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We calculate this via a Laurent series expansion at zero:

π

z2
1

πz(1− (πz)2/3! +O(z4))
=

1

z3
(
1 + (πz)2/3! +O(z4)

)
=

1

z3
+
π2

6z
+ . . .

So we have S = −π2/12.

2. (1) f(z) has simple poles at the ath and bth roots of unity (which are distinct since a and b are
relatively prime). To calculate the residue at e2πik/a, where k = 0, . . . , a − 1, it is easiest to use the
following trick which appears in Section 78 of the book: If f(z) = p(z)/q(z) has a simple pole at z0
with q(z0) = 0 and p(z0) 6= 0 then

Res(f, z0) = lim
z→z0

p(z)(z − z0)

q(z)
= lim
z→z0

p(z)(z − z0)

q(z)− q(z0)
=
p(z0)

q′(z0
.

Applying this to our function at e2πik/a with p(z) = 1
zt+1(1−zb) and q(z) = (1− za) we have

Res(f, e2πik/a) =
1

(−a(e2πik/a)a−1)(1− e2πikb/a)e2πik(t+1)/a
=

1

(−ae−2πik/a)(1− e2πikb/a)e2πik(t+1)/a
.

The formula for Res(f, b) is identical with the roles of a and b reversed.

(2) We will calculate the residue at zero by calculating the Laurent expansion at zero, which by
expanding 1/(1− za) and 1/(1− zb) as geometric series for |z| < 1 is:

1

zt+1

( ∞∑
n=0

zan

)( ∞∑
m=0

zbn

)
=

1

zt+1

∞∑
`=0

∑
an+bm=`,m,n≥0

z` =
1

zt+1

∞∑
`=0

N(`)z`.

Thus, the residue at zero is the coefficient of zt in the power series, which is N(t).

(3) Since the denominator is a polynomial of degree a+ b+ t+ 1 ≥ 2, we know that max|z|=R f(z) =
O(1/R2) for a large circle CR centered at the origin. Applying an ML estimate to

∮
CR

f(z)dz and
taking a limit as R→∞ shows that

0 =
1

2πi

∮
CR

f(z)dz = Res(f, 0) +

a−1∑
k=0

Res(f, e2πik/a) +

b−1∑
k=0

Res(f, e2πik/b).

Rearranging gives a formula for N(t). This formula is simplified in the next part of the problem in
an easy to apply form, but notice that it is already nontrivial in the sense that it only contains a + b
terms (no matter how large t is).

3. We would like to find α and β so that

R(z) =
α

z − a
+

β

z − b
.

(Since a and b are distinct we know from the partial fraction decomposition that such α, β exist). Let
Ca be a positively oriented circle containing a and not b and let b be such a circle around b. Observe
that since R(z) has only a simple pole at a inside Ca:

2πiRes(R, a) =

∮
Ca

R(z)dz =

∮
Ca

α

z − a
dz +

∮
Ca

β

z − b
dz = α

∮
Ca

1

z − a
dz + 0,

since the second function is analytic on and inside Ca. The latter expression is just 2πiα, so we must
have α = Res(R, z). A similar argument works for β.
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