
LECTURE NOTES 1: A PROOF OF THE VALUE OF ζ(2)

1. The Riemann zeta function

The Riemann zeta function ζ : (1,∞) → (0,∞) is defined by the formula

ζ(s) =
∞
∑

k=1

k−s .

The sum on the right-hand side is by definition the limit limn

∑

n

k=1 k
−s of the partial sums;

the limit exists (though it may be ∞) because the partial sums form a non-decreasing sequence of
(positive) real numbers. In fact, for any s > 1, the expression defining ζ(s) is finite: this is true by
the integral test.

All of these things are true by the ideas and techniques of real analysis in Math 104; in fact,
the Riemann zeta function has a natural definition as a complex-valued function of the complex
variable s (except for certain special values of s ∈ C called the poles of ζ). Later on in the course,
we will set up much of the machinery to define ζ in this more general way, whether or not we have
time to construct it.

Partly in order to illustrate the usefulness of complex numbers, we will now prove a theorem
which identifies the value of ζ(s) when s = 2:

Theorem 1.1. The value of ζ(2) is π2/6.

There are certain preliminaries needed to prove the theorem.

2. Preliminaries

2.1. The Binomial theorem.

Theorem 2.1. Let n ∈ N and let x, y ∈ C. Then

(

x+ y
)n

=

n
∑

k=0

(

n

k

)

xkyn−k ,

where the binomial coefficient
(

n

k

)

is given by
(

n

k

)

=
n!

k!(n− k)!
(1)

for n, k ∈ N with n ≥ k; we adopt the convention that n! = 0.

Proof. The result is proved by an induction on n ∈ N; both sides are equal to one if n = 0, so
that’s the initial step for the induction verified. The generic step of the induction, for the value
n+ 1, invokes the inductive hypothesis for value n, as well as the identity

(

n+ 1

k

)

=

(

n

k

)

+

(

n

k − 1

)

.

This can be verified from the definition (1), (but there is also a nice combinatorial interpretation,
and it is also worthwhile to bear in mind how Pascal’s triangle is formed). �

Remark. Note also that
(

n

k

)

=
(

n

n−k

)

.

1
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2.2. Polynomials and their roots. A polynomial P of degree n is an expression axn + bxn−1 +
· · · + C. A root of the polynomial P is a value x such that P (x) = 0. (These roots may be real
numbers: for example, the degree two or quadractic polynomial X2 − 1 are has two real roots, −1
and 1; however, the roots can also be complex numbers. The polynomial x2+1 has roots i and −i).

There are two assertions we’ll need about polynomials.

A polynomial of degree n ∈ N has at most n roots. This is a consequence of the Euclidean

algorithm: you may wish to recall or study this, or it is permissible to take the assertion on faith.
(Later on in the course, we will be able to prove the fundamental theorem of algebra, which as-
serts that a degree-n polynomial in fact has exactly n roots, when these are counted according to
multiplicity). �

The formula for the sum of a polynomial’s roots. Suppose that a degree-n polynomial
P (x) = axn + bxn−1 + · · · + C is factored as P (x) = a(x − r1) · · · · · (x − rn), where r1, . . . , rn are
the roots of P . Then

n
∑

k=1

rk =
−b

a
.

Let’s prove this first when a = 1. Here we just compare the coefficient of xn−1 in the two expressions
for P . The case where a is any non-zero complex number reduces to this one by defining P through
by a. �

2.3. Some basic properties of trigonometry functions. The functions sin and cosine, sin, cos :
R → [−1, 1] are defined on the real line and have the property that sin is strictly increasing on [0, π/2]
and cos is strictly decreasing this interval. We also define tan = sin / cos and cot = cos / sin, as well
as csc = 1/ sin.

From the above, we see that cot is a strictly decreasing function on (0, π/2).
Of course we have cos2(θ)+ sin2(θ) = 1 for all θ ∈ R. Dividing through by sin2(θ), we obtain the

identity

1 + cot2(θ) = csc2(θ) for all θ ∈ R , (2)

(though note that sometimes both sides are ∞.)
Finally, we will make use of the fact that

sin θ ≤ θ ≤ tan θ

whenever θ ∈ (0, π/2).

3. Proof of Theorem 1.1

We begin by deriving an interesting identity.

Proposition 3.1. For any n ∈ N with n ≥ 1,

n
∑

k=1

cot2 kπ

2n+1 =
n(2n− 1)

3
.

Proof. The proof is an application of complex numbers. Consider the expression
(

cos θ+i sin θ
)2n+1

.
Using the polar coordinate representation to multiply a pair of complex numbers, and induction on
n, we find that

(

cos θ + i sin θ
)2n+1

= cos(2n+ 1)θ + i sin(2n+ 1)θ .
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Expand the left-hand side using the binomial theorem. The resulting terms are either real or
imaginary; group them accordingly. Then equate the imaginary term with its counterpart above.
We find that

sin(2n+ 1)θ =
n
∑

k=0

(−1)k cos2n−2k(θ) sin1+2k(θ)

(

2n+ 1

1 + 2k

)

.

By rewriting the right-hand side using 1 + 2k = 2n+ 1− 2(n− k), we obtain the identity

sin(2n+ 1)(θ) = sin2n+1(θ)

n
∑

k=0

(−1)k cot2(n−k)(θ)

(

2n+ 1

2(n− k)

)

,

which may be rewritten

sin(2n+ 1)(θ) = sin2n+1(θ)
n
∑

k=0

(−1)n−k cot2k(θ)

(

2n+ 1

2k

)

.

Now on the left-hand side of this last identity, the function has zeros (or roots) at each of
{

kπ

2n+1 : k = 0, . . . , n
}

. If we now P to be the degree-n polynomial given by

P (x) =
n
∑

k=0

(−1)kxk
(

2n+ 1

2k

)

,

we learn that the polynomial P (x2) has roots at each of the values in the set
{

cot kπ

2n+1 : k =

1, . . . , n
}

: indeed, the factor sin2n+1(θ) is non-zero for all θ ∈ (0, π/2), (though it is zero when θ = 0
and for this reason, we cannot include k = 0 here).

That means each element of the set
{

cot2 kπ

2n+1 : k = 1, . . . , n
}

is in fact a root of P itself. Now
we claim that this exhausts the set of roots of P . To see this, first note that each of these n real
numbers is distinct: indeed, because the function cot is strictly decreasing on (0, π/2), so is cot2,
so the n numbers must all be different. Second, we noted in the preliminaries that a degree-n
polynomial such as P cannot have more than n roots. So our list of n numbers must comprise all
of P ’s roots!

This deduction allows us to use the formula for the sum of the roots of P . Doing so gives that

n
∑

k=1

cot2 kπ

2n+1 =

(

2n+1
2(n−1)

)

(

2n+1
2n

) ,

whose right-hand side may more simply be written as
(

2n+1
3

)

(

2n+1
1

) .

This ratio equals n

3 (2n− 1). This completes the proof of Proposition 3.1. �

We also need a straightforward consequence of Proposition 3.1.

Corollary 3.2. For n ∈ N with n ≥ 1,
n
∑

k=1

csc2 kπ

2n+1 =
2n(n+ 1)

3
.

Proof. This follows directly from Proposition 3.1 and the identity 2. �

Armed with the identites in the proposition and its corollary, we are ready to give the proof of
Theorem 1.1. The inequalities (valid for θ ∈ (0, π/2)),

sin θ ≤ θ ≤ tan θ
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that we recorded earlier translate to

cot θ ≤ θ−1 ≤ csc θ .

Consider the n sets of inequalities given by taking θ = kπ

2n+1 for k ∈ {1, . . . , n}; sum them up. Using
the two identities we derived in the proposition and the corollary, we learn that

n(2n− 1)

3
≤

n
∑

k=1

(2n+1)2

k2π2 ≤
2n(n+ 1)

3
.

Rearranging, we see that

n(2n− 1)

3(2n+ 1))2
π2 ≤

n
∑

k=1

1
k2

≤
2n(n+ 1)

3(2n+ 1)2
π2 .

The lower and upper bounds each take the form π
2

6 plus a certain error; in the lower bound on the

left, this error cannot be smaller than a large constant times n−1, while in the upper bound on the
right, it cannot be larger than a large constant times n−1. In this way, we see that the n-th partial
sum for ζ(2) is sandwiched between two sequences of real numbers, each of which converges to π2/6.
So the partial sums converge to π2/6, and we have proved Theorem 1.1. �
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