
Math 185 Fall 2015, Final Exam Solutions

Nikhil Srivastava

8:10am–11:00am, December 17, 2015, 9 Evans Hall

1. (12 points) True or False (no need for justification):

(a) If f(z) is analytic and bounded in the right half plane H = {z : Re(z) > 0} then f must
be constant in H.

False. Consider e−z, whose magnitude is less than one in the right halfplane.

(b) If u(x, y) is harmonic in R2 and there is an M > 0 such that |u(x, y)| ≤ M for all x, y
then u must be constant.

True.

(c) f(z) = ez is one to one in the unit disk D(0, 1).

True. The disk is contained in the strip {Im(z) ∈ (−π, π]}, on which ez is 1-1 with
inverse Log(z).

(d) If f(z) has a pole of order m at z0 = 0 then f(z2) has a pole of order 2m at z0 = 0.

True. f(z) = g(z)
zm with analytic g(0) 6= 0, so f(z2) = g(z2)

z2m
and g(02) = g(0) 6= 0. You

can also look at the Laurent series.

(e) If f(z) has a removable singularity at z0 then Res(f, z0) = 0.

True, by definition.

(f) If f is analytic and nonconstant in D(0, 1) and |f(z)| ≤ 1 for all z ∈ D(0, 1) then
|f(z)| < 1 for all z ∈ D(0, 1).

True. Maximum modulus principle.

2. (10 points) Suppose u(x, y) and v(x, y) are harmonic in a domain D and v is the harmonic
conjugate of u. (i) Prove that u2− v2 is harmonic in D. (ii) Prove that the partial derivative
ux is harmonic in D.

Solution: (i) f = u+ iv is analytic in D, so f2 = (u+ iv)2 = u2 − v2 + 2iuv is also analytic,
and its real part must be Harmonic.

(ii) f ′(z) is also analytic in D and f ′(x+ iy) = ux − iuy, so ux is harmonic.

3. (10 points) (i) Find a Möbius transformation which maps the open half-disk

S = {z : |z| < 1, Im(z) > 0}

to a quadrant. (ii) Find a 1-1 conformal mapping of the quadrant to the upper halfplane. (iii)
Find a Möbius transformation mapping the upper halfplane to the unit disk D = {z : |z| < 1}.
(iv) Compose these to give a 1-1 conformal map of the half-disk to the unit disk.
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Justify each step (i.e., explain why the transformations you produce have the desired prop-
erties).

What goes wrong if you try to directly use the transformation w = z2 to map S conformally
and 1-1 onto D?

Solution: (i) w = T1(z) = −i z−1z+1 maps S to Q = {z : Im(z) > 0,Re(z) > 0}. See HW13.8 for

details. (ii) The mapping T2(w) = w2 maps Q to the upper half plane H, and is conformal
in Q since T ′2(w) = 2w 6= 0 there. It is also 1− 1 since each point in H has a unique square
root in Q by reiθ →

√
reiθ/2. (the other square root, which is its negative, lies in the lower

half plane and therefore outside Q) (iii) y = T3(w) = w−i
w+i maps H to D (see Section 101 for

details, and other transformations that work).

Thus, the composition

T3 ◦ T2 ◦ T1(z) =
T1(z)

2 − i
T1(z)2 + i

=
−( z−1z+1)2 − i
−( z−1z+1)2 + i

maps S to D. It is conformal and 1 − 1 because each of T1, T2, T3 has these properties, and
composition preserves them.

Directly using w = z2 does not because the image of S is the slit disk D \ [0, 1).

4. (9 points) Classify (as removable, pole, or essential) the singularity at z = 0 of the following
functions, and explain why. If it is a pole calculate the residue.

Log(z + 1) sin(z)

z2
esin(1/z)

1 + z

ez − 1
,

where Log is the principal branch.

Solution: (i) Removable, because Log(z + 1) and sin(z) have zeros of order 1 at z = 0 (as
evidenced by their Taylor series), which cancel the pole of order 2.

Alternatively you can just compute the limit as z → 0 and see that it is 1, which in particular
is bounded.

(ii) Essential. Considering the sequence zn = 2
nπ converging to zero we find that esin(1/zn)

alternates between e0 and e1, so in particular the limit as n → ∞ does not exist and the
singularity cannot be removable or a pole, so it is essential.

(iii) Pole of order 1 with residue 1.

5. (10 points) Show that there exists an ε > 0 such that for every polynomial p(z):

max
|z|=1

∣∣∣∣1z − p(z)
∣∣∣∣ > ε.

(hint: argue by contradiction.)

Solution: Assume for contradiction that for every ε > 0 there is a polynomial pε(z) with

max
|z|=1

∣∣∣∣1z − pε(z)
∣∣∣∣ < ε.
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We can write for every such pε:∮
|z|=1

1

z
dz =

∮
|z|=1

(
1

z
− pε(z)

)
dz +

∮
|z|=1

pε(z)dz.

The second integral is zero because pε(z) is entire. Applying an ML estimate, we get∣∣∣∣∣
∮
|z|=1

1

z
dz

∣∣∣∣∣ ≤ max
|z|=1

|1/z − pε(z)| · 2π ≤ 2πε.

Since this is true for every ε > 0 we must have∮
|z|=1

1

z
dz = 0.

But this is false (the fundamental integral says it’s 2πi).

6. (10 points) Prove or disprove: there is a function f analytic in D(0, 1) with the property that

f

(
1

n2

)
=

1

n3
,

for all integers n > 1.

Solution: This is false. The idea is that an analytic function is locally approximated by the
first few terms of its Taylor series, which is a polynomial (whose degree depends on the order
of the zero), and which grows as an integer power of |z| in a neighborhood of zero, but the
function above grows as |z|3/2.
Here is a formal proof. Suppose for contradiction that f was analytic at zero. Observe that
limn→∞ f(1/n2) = 0 so by continuity it must be the case that f(0) = 0. Since f is analytic
it has a Taylor expansion

f(z) = a1z + a2z
2 +O(z3)

convergent in a neighborhood D(0, ε) of zero. If a1 = 0 then we have

lim
n→∞

f(1/n2)

1/n3
= lim

n→∞
n3
(
a2/n

4 +O(1/n6)
)

= a2
1

n
+O(1/n3) = 0,

which is absurd since f(1/n2) = 1/n3. On the other hand if a1 6= 0 we have

lim
n→∞

f(1/n2)

1/n3
= n3

(
a1/n

2 +O(1/n4)
)

= lim
n→∞

a1n+O(1/n) =∞,

which is again absurd. Thus, no such function can exist.

A previous version of the solutions contained a comment about a possible alternative proof
involving comparison to g(z) = exp((3/2)Log(z)) via the identity theorem. In fact such an
approach cannot work directly because g(z) is not analytic in any neighborhood of zero, which
is the limit point of the sequence 1/n2 on which f and g agree.

To make such an approach work, one has to consider the function f2 and show using the
identity theorem that f2 must be equal to g(z) = z3 on D(0, 1), and use this to derive a
contradiction.
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7. (7 points) Suppose f is analytic in the closed disk D(0, 1) = {z : |z| ≤ 1} and |f(z)| < 1 for
all z ∈ D(0, 1). Prove that f has a unique fixed point in D(0, 1) (i.e., there is a unique z0
such that f(z0) = z0).

Solution: Observe that the function f(z) − z is analytic on the unit circle, ∂D(0, 1). Since
|f(z)| < 1 we have 1 = | − z| > |f(z)| on ∂D(0, 1). By Rouche’s theorem, f(z) − z has the
same number of zeros in D(0, 1) as the function −z, which has exactly one zero. Thus f has
exactly one fixed point in D(0, 1).

8. (12 points) State and prove the Cauchy Integral Formula. (you may assume the Cauchy-
Goursat theorem).

Solution: See textbook.

9. (10 points) Evaluate the integral: ∫ π

0

1

2 + sin(2θ)
dθ.

Justify all steps.

Solution: Brown and Churchill Sec 92, Example 1.

10. (10 points) Evaluate the integral: ∫ ∞
−∞

cos(2x)− 1

x2
dx.

Justify all steps.

Solution: HW10 91.1 (see online solutions).
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