Math 185 Fall 2015, Sample Final Exam

Nikhil Srivastava

December 12, 2015

Questions 1, 8, 9 are worth 15 points, and Question 5 is worth 5 points. The rest are worth 10 points.

1. True or false:
 (a) If \(f \) is analytic in the annulus \(A = \{ z : 1 < |z| < 2 \} \) then there exist functions \(g \) and \(h \) such that \(g \) is analytic in \(|z| < 2 \), \(h \) is analytic in \(|z| > 1 \), and \(f = g + h \) in \(A \).
 (b) There is a simple closed contour in \(\mathbb{C} \setminus \{0\} \) such that
 \[\oint_C \frac{1}{z^2} \, dz = 2\pi i. \]
 (c) If \(f(z) \) and \(g(z) \) have poles at \(z_0 \) then \(\text{Res}(fg, z_0) = \text{Res}(f, z_0) \text{Res}(g, z_0) \).
 (d) Every function analytic in \(D(0,1) \) has an analytic continuation to \(D(0,2) \).
 (e) If \(u(x, y) \) and \(v(x, y) \) are harmonic in a domain \(D \) then the product \(u(x, y)v(x, y) \) is also harmonic in \(D \).

2. (i) Find a Möbius transformation \(T \) mapping the points \(z_0 = 0, z_1 = i + e^{-i\pi/4}, z_2 = i + 1 \) to \(0, 1, \infty \) respectively. (ii) Let \(D \) be the intersection of the two open disks \(D(1,1) = \{ z : |z - 1| < 1 \} \) \(D(i,1) = \{ z : |z - i| < 1 \} \). Show that \(T \) maps \(D \) to the quadrant \(Q = \{ z : \text{Re}(z) > 0, \text{Im}(z) > 0 \} \).

3. Verify that \(u(x, y) = x^3y - xy^3 \) is harmonic in \(\mathbb{C} \). Find a harmonic conjugate \(v(x, y) \) of \(u \) and an entire function \(f(z) \) such that \(f(x + iy) = u(x, y) + iv(x, y) \). Write \(f \) as a function of \(z \).

4. Consider the polynomial
 \[f(z) = z^4 + 5z + 1. \]
 How many zeros does \(f \) have in the annulus \(1 < |z| < 2 \)?

5. Prove that there is no entire function with \(\text{Re}(f(z)) = |z|^2 \).
6. (i) Find the Taylor expansion of \(\log(z) \), the principal branch of the logarithm, centered at \(z_0 = 2 \). (ii) Consider the branch
\[
\log_\theta(z) = \ln |z| + i \text{Arg}_\theta(z) \quad \text{Arg}_\theta \in (\theta, \theta + 2\pi),
\]
for some \(\theta \in (0, \pi) \). What is the radius of convergence of the Taylor series of \(\log_\theta(z) \) at \(z_0 = 2 \)?

7. Does the series
\[
\sum_{n=0}^{\infty} \frac{z^n}{n!}
\]
converge uniformly in \(\mathbb{C} \)? Justify your answer.

8. Prove the Casorati-Weierstrass theorem: if \(f(z) \) has an essential singularity at \(z_0 \) then for every \(w_0, \epsilon > 0 \), and \(\delta > 0 \), there exists a \(z \) with \(0 < |z - z_0| < \delta \) such that \(|f(z) - w_0| < \epsilon \). (you can use any theorem on classification of singularities.)

9. Evaluate the integral
\[
\int_0^\infty \frac{\sin(x)}{x(x^2 + 1)} dx,
\]
where we understand the integrand as extending to a continuous function with value \(\lim_{x \to 0} \frac{\sin(x)}{x(x^2 + 1)} \) at \(x = 0 \).