Math 185 Fall 2015, Sample Final Exam

Nikhil Srivastava

December 12, 2015

Questions 1, 8, 9 are worth 15 points, and Question 5 is worth 5 points. The rest are worth 10 points.

1. True or false:
(a) If f is analytic in the annulus $A=\{z: 1<|z|<2\}$ then there exist functions g and h such that g is analytic in $|z|<2, h$ is analytic in $|z|>1$, and $f=g+h$ in A
(b) There is a simple closed contour in $\mathbb{C} \backslash\{0\}$ such that

$$
\oint_{C} \frac{1}{z^{2}} d z=2 \pi i
$$

(c) If $f(z)$ and $g(z)$ have poles at z_{0} then $\operatorname{Res}\left(f g, z_{0}\right)=\operatorname{Res}\left(f, z_{0}\right) \operatorname{Res}\left(g, z_{0}\right)$.
(d) Every function analytic in $D(0,1)$ has an analytic continuation to $D(0,2)$.
(e) If $u(x, y)$ and $v(x, y)$ are harmonic in a domain D then the product $u(x, y) v(x, y)$ is also harmonic in D.
2. (i) Find a Möbius transformation T mapping the points $z_{0}=0, z_{1}=i+e^{-i \pi / 4}, z_{2}=i+1$ to $0,1, \infty$ respectively. (ii) Let D be the intersection of the two open disks $D(1,1)=$ $\{z:|z-1|<1\} D(i, 1)=\{z:|z-i|<1\}$. Show that T maps D to the quadrant $Q=\{z: \operatorname{Re}(z)>0, \operatorname{Im}(z)>0\}$.
3. Verify that $u(x, y)=x^{3} y-x y^{3}$ is harmonic in \mathbb{C}. Find a harmonic conjugate $v(x, y)$ of u and an entire function $f(z)$ such that $f(x+i y)=u(x, y)+i v(x, y)$. Write f as a function of z.
4. Consider the polynomial

$$
f(z)=z^{4}+5 z+1
$$

How many zeros does f have in the annulus $1<|z|<2$?
5. Prove that there is no entire function with $\operatorname{Re}(f(z))=|z|^{2}$.
6. (i) Find the Taylor expansion of $\log (z)$, the principal branch of the logarithm, centered at $z_{0}=2$. (ii) Consider the branch

$$
\log _{\theta}(z)=\ln |z|+i \operatorname{Arg}_{\theta}(z) \quad \operatorname{Arg}_{\theta} \in(\theta, \theta+2 \pi)
$$

for some $\theta \in(0, \pi)$. What is the radius of convergence of the Taylor series of $\log _{\theta}(z)$ at $z_{0}=2$?
7. Does the series

$$
\sum_{n=0}^{\infty} \frac{z^{n}}{n!}
$$

converge uniformly in \mathbb{C} ? Justify your answer.
8. Prove the Casorati-Weierstrass theorem: if $f(z)$ has an essential singularity at z_{0} then for every $w_{0}, \epsilon>0$, and $\delta>0$, there exists a z with $0<\left|z-z_{0}\right|<\delta$ such that $\left|f(z)-w_{0}\right|<\epsilon$. (you can use any theorem on classification of singularities.)
9. Evaluate the integral

$$
\int_{0}^{\infty} \frac{\sin (x)}{x\left(x^{2}+1\right)} d x
$$

where we understand the integrand as extending to a continuous function with value $\lim _{x \rightarrow 0} \sin (x) /\left(x\left(x^{2}+1\right)\right)$ at $x=0$.

