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1 Analytic Continuation

Analytic continuation means extending an analytic function defined in a domain to one
defined in a larger domain.

Definition 1.1. If f(z) is analytic in a domain D and F (z) is analytic in a domain D′ ⊃ D
with F (z) = f(z) in D, then we say that F is an analytic continuation of f .

It is used as both a noun (above) and as a verb (“to analytically continue”), to indicate
the process of defining the extension. The simplest example is given by the geometric series
at zero:

f(z) = 1 + z + z2 + . . . ,

which converges in the open disk D = {|z| < 1} and defines an analytic function there. If
we multiply by z and subtract we obtain the familiar formula:

zf(z)− f(z) = 1 ⇒ f(z) =
1

1− z
⇒ f(z) =

1

1− z
z ∈ D,

which is a functional equation satisfied by f(z). The crucial point is that the expression on
the right hand side makes sense for a much larger set of z, in particular it defines an analytic
function F (z) = 1

1−z in the larger domain D′ = C \ {1}. Thus, F is an analytic continuation
of f .

The general principle is that there are many ways of describing a function, and some de-
scriptions make sense in larger regions than others. In particular, sometimes the description
we start off with (such as the power series above) is often only a small piece of a much larger
picture, which is revealed by the analytic continuation.

The reason it makes sense to speak of the analytic continuation is the following uniqueness
property, which is an immediate consequence of the identity theorem.

Theorem 1.2. If F1 : D′ → C and F2 : D′ → C are two analytic continuations of f : D → C
then F1(z) = F2(z) for all z ∈ D′.

Proof. Notice that F1(z)− F2(z) vanishes on D ⊂ D′, which is an open set. By the identity
theorem F1 and F2 must be the same.
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Remark 1.3. The uniqueness property requires the domains of the two analytic continua-
tions to be the same. It is not generally true that if F1 : D1 → C and F2 : D1 → C are two
analytic continuations of f : D → C to different domains D1, D2, that they must agree on
D1 ∩D2.

A slightly more complicated example is the power series with Fibonacci coefficients:

f(z) = f0 + f1z + f2z
2 + . . . ,

which we considered a few lectures ago. Initially we observed that this converges and thereby
defines an analytic function in some neighborhood D of zero. By applying the recurrence
fn+1 = fn + fn−1, we were able to obtain the functional equation:

(1− z − z2)f(z) = z ⇒ f(z) =
z

1− z − z2
z ∈ D.

We then used the right hand side as a definition of f in a much larger domain D′ = C\{φ, ψ}.
Formally, F (z) = z

1−z−z2 is an analytic continuation of f to D′. We didn’t explicitly use a
different name to distinguish between the continuation and the original function (since they
agree where they are both defined) and we will sometimes follow this convention in the
future. In any case, we were then able to use the properties of F in the much larger domain
D′ (by applying the Residue theorem) to get a good handle on what is happening at zero,
and thereby extract a formula for the coefficients.

A functional equation is not the only way to obtain an analytic equation, but it is often
the best one. In general, what one is looking for is an alternate representation of the same
function which makes sense in a larger region; this alternate description is then used as a
definition in the larger region. The ones we obtained above were closed form formulas. Below
we look at a more interesting example where this is not the case.

2 The Gamma Function

The Gamma Function is a meromorphic function which extends the factorial function to all
complex numbers other than the nonpositive integers. It is defined as an integral:

Definition 2.1.

Γ(z) =

∫ ∞
0

e−ttz−1dt.

We will verify in a moment that it indeed matches the factorial, but first let us figure out
where this integral converges and where the definition makes sense. Observe that it converges
in the upper limit for real z > 0 because e−t decays faster than any power tz−1 grows; in
fact it converges uniformly in any interval z ≤ a since tz−1 ≤ ta−1 in such an interval. It
also converges in the lower limit since tz−1 = 1/t1−z with 1 − z < 1 and e−t ≤ 1 in every
neighborhood of 1; moreover it converges uniformly in every set z ≥ b since tz−1 ≤ tb−1 for
|t| < 1. All in all, the integral converges uniformly in every interval [b, a] with b > 0.
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To handle the case of complex z, we observe that∣∣∣∣∫ ∞
0

e−ttz−1dt

∣∣∣∣ ≤ ∫ ∞
0

|e−ttz−1|dt =

∫ ∞
0

e−ttRe(z)−1dt

converges in Re(z) > 0 and uniformly in every strip 0 < b ≤ Re(z) ≤ a. Thus, the function
is well-defined for Re(z) > 0. To see that it is analytic there, we observe that any point in
Re(z) > 0 is contained in a strip of this type, so uniform convergence allows us to differentiate
under the integral sign (by going to the definition of the derivative and applying an ML
estimate type of argument), and we get

d

dz
Γ(z) =

∫ ∞
0

d

dz
e−ttz−1dt =

∫ ∞
0

e−ttz−1 log(t)dt,

so Γ(z) is analytic when Re(z) > 0.
Let us now plug in some values to see the relationship with the factorial. We evaluate

Γ(1) = 1 Γ(2) = 1 Γ(3) = 2 . . . .

The general idea is to use integration by parts to get Γ(z + 1) from Γ(z), for Re(z) > 0:

Γ(z + 1) =

∫ ∞
0

e−ttzdt = tz(−e−t)∞0 −
∫ ∞
0

ztz−1(−e−t)dt = 0 + zΓ(z).

Thus, we have the recursive functional equation:

Γ(z + 1) = zΓ(z).

In particular, at the integers we obtain Γ(n) = (n− 1)Γ(n− 1) = . . . = (n− 1)!.
We are now going to use the functional equation to analytically continue Γ(z) to a larger

region. The equation tells us how to get z + 1 from z but it also tells us how to get z from
z + 1:

Γ(z) = Γ(z + 1)/z.

We can use this as a definition to obtain an extension Γ1 : D1 → C where D1 = {Re(z) > −1}
as

Γ1(z) = Γ(z + 1)/z

when z ∈ D1 \D0 and just Γ(z) otherwise. Note that this only works when z 6= 0 and so it
has a pole there. THe punch line is that this function is automatically analytic at z ∈ D1

since z + 1 ∈ D0 and Γ is analytic at z + 1. Since it is an analytic function which agrees
with Γ on D0 it must be the unique analytic continuation to D1.

There is no reason to stop here: by doing the same thing again we can obtain a continu-
ation

Γ2(z) = Γ(z + 2)/z(z + 1).

If we do this m times we obtain an analytic function in Dm = {Re(z) > −m}:

Γm(z) = Γ(z +m)/z(z + 1) . . . (z +m− 1),
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with poles at 0,−1, . . . − (m − 1). In general we can define an function Γ(z) analytic in
C \ {0,−1, . . .}, which we refer to as “the” Gamma function.

This will come up again in the prime number theorem, but it comes up in a variety of
other contexts.

3 The PNT and the ζ function

A number n 6= 1 is prime if has no divisors other than 1 and itself. The fundamental theorem
of arithmetic says that every integer has a unique factorization as a product of prime powers.
Euclid proved that there are infinitely many primes in 300BC. However, you can ask: how
big of an infinity? Or even, how likely is a ‘random’ number to be prime? It is not easy
to get a handle on the distribution of prime numbers. For instance, what is the number of
primes less than 1000?

The Prime Number Theorem, conjectured by Gauss and Legendre, provides a sharp
answer to this question. It is too much to expect to get an exact formula like

√
x, but we

can get close. Let π(x) denote the number of primes less than x > 1. Then

lim
x→∞

π(x)

x/ log(x)
= 1.

The Riemann Zeta function is defined as

ζ(s) =
∞∑
n=1

1

ns
.

It is easy to see that it converges for Re(s) > 1, and earlier we calculated ζ(2) and ζ(4). The
value of ζ(3) is still open. The reason it is interesting in this context is the Euler Product
Formula:

ζ(s) =
∏

p prime

(1− 1

ps
)−1 Re(s) > 1,

which connects the values of zeta to the distribution of primes, much like in the coin exchange
problem on HW10. In particular, the solution to the Basel problem π2/6 already implies
that there are infinitely many primes.

Currently ζ is only defined right of the line Re(s) = 1, but it turns out it has a whole
other life left of this line, which is where we will look to understand the distribution of the
primes.
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