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In this lecture we will see how to use complex analysis to solve an a priori discrete
problem. The Fibonacci numbers are an infinite sequence defined implicitly by the recursion
relation:

f0 = 0 f1 = 1 f2 = 1 . . . fn+2 = fn+1 + fn . . . .

This definition explains the process that generates the numbers – adding the two previous
numbers – but does not give an explicit formula for the nth number (it is unclear that one
exists) or a clear idea of, for instance, how fast these numbers grow.

We will be able to obtain both by finding a generating function for the fn. The first step
is to consider the power series

F (z) :=
∞∑
n=0

fnz
n

defined by the fn. Note that F (0) = 0 and F (z) converges in a neighborhood of 0 (for
instance, by observing that fn+1 ≤ 2fn, so that fn ≤ 2n and applying a comparison test to
the geometric series), so F is analytic at zero. The numbers we are interested in are (upto
factorials) the coefficients of the Taylor series of F at zero, which may also be written as:

fn =
F (n)(0)

n!
=

1

2πi

∮
C

F (z)

zn+1
dz = Res(

F (z)

zn+1
, 0),

by applying the Cauchy Integral Formula and the Residue theorem. We will now calculate
these residues in a different way.

The key is to use the recursion relation to find a functional equation satisfied by the
F (z). In this case, we know that fn+2 as the sum of the two terms before it, so there should
be a similar relationship between F (z) and zF (z) and z2F (z), which are just F (z) with
coefficients shifted by one and two places. A moment’s thought reveals that after throwing
away the first two coefficients, we simply have

F (z)− f1z − f0 = F (z)− z = zF (z) + z2F (z),

which after rearranging is

F (z) =
z

1− z − z2
.
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This is a different (and much more powerful way) of representing the series fn. In particular,
note that F (z) is a rational function that is analytic everywhere except for the zeros of

1 − z − z2. A simple calculation shows that these zeros are given by z = −1±
√
5

2
, which we

will refer to as φ and ψ (the first is just minus the golden ratio). Note that φψ = −1 and
φ+ ψ = −1.

We now consider the function F (z)/zn+1, whose residues at zero are the Fibonacci num-
bers. This function has a pole of order n at zero and simple poles at φ, ψ. Let CR be a circle of
radius R centered at zero containing all of these poles. Observe that F (z)/zn+1 = −1

zn(z2+z−1)
is the reciprocal of a polynomial of degree at least two. By the midterm extra credit problem,
this means that

0 =
1

2πi

∮
CR

F/zn+1dz = Res(F (z)/zn+1, 0) + Res(F (z)/zn+1, φ) + Res(F (z)/zn+1, ψ),

by the Residue theorem. Rearranging and easily computing the residues at the simple poles
φ and ψ yields the formula

fn =
(1+
√
5

2
)n − (1−

√
5

2
)n

√
5

.

This is the simplest instance of the use of generating functions that I can think of. This
method is extremely versatile and there is a whole field, known as analytic combinatorics
devoted to it. The idea is that the behavior of various (implicitly defined) combinatorial
sequences of numbers can be precisely understood by studying the singularities of the asso-
ciated generating functions. This comes up a lot, for instance, in the analysis of algorithms.

See the books “generatingfunctionology” by Wilf or “Analytic Combinatorics” by Fajolet
and Sedgewick for more details.
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