Do 4 out of 5 of the following questions (indicate which ones). Each is worth 10 points.

1. Determine whether the following series converge or diverge, using appropriate tests:
 \[
 \sum_{n=1}^{\infty} \frac{(n!)^2}{n^2 + (2n)!}, \quad \sum_{n=1}^{\infty} (-1)^n \cos(1/n), \quad \sum_{n=1}^{\infty} \frac{\log n}{n^2}.
 \]

2. Consider the approximation:
 \[
 \sqrt{1 + x} \approx 1 + \frac{x}{5}.
 \]
 Give a bound for the maximum error of this approximation when \(x \in [0, 1/2] \). Justify your reasoning.

3. There are snowboarders (\(B \)) and skiers (\(S \)) at Lake Tahoe. Their populations each year are determined by the populations the previous year, according to the formulas:
 \[
 B(n) = 2B(n-1) - S(n-1), \quad S(n) = \frac{1}{2}B(n-1) + \frac{1}{2}S(n-1).
 \]
 Suppose that initially \(B(0) = 100 \) and \(S(0) = 50 \). What will their relative proportions be after a long time? Will the total population stabilize, tend to zero, or tend to infinity as \(n \) grows? *Hint: write these equations in matrix form.*

4. Suppose that
 \[
 x^2 + y^3 = \sin(s) + \cos(t) \quad \text{and} \quad xy = s - t.
 \]
 Find \(\left(\frac{\partial x}{\partial y} \right)_s \) as a function of \(x, y, s, t \).

5. Use Lagrange multipliers to find the point on the sphere
 \[
 x^2 + y^2 + z^2 = 1
 \]
 which is closest to the point \((0, 3, 4)\).