Math 121A Spring 2015, Homework 10

Due April 20 at 5pm in my office, or in class

We will denote the Fourier transform of \(f : \mathbb{R} \to \mathbb{C} \) as
\[
\hat{f}(\alpha) = (\mathcal{F} f)(\alpha) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) e^{-i\alpha x} \, dx
\]
and the inverse Fourier transform of \(\hat{f} : \mathbb{R} \to \mathbb{C} \) as:
\[
(\mathcal{F}^{-1} \hat{f})(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(\alpha) e^{i\alpha x} \, d\alpha.
\]

Do not worry about convergence of integrals for this homework — assume all functions are nice enough so that the relevant Fourier transforms exist and the Fourier inversion theorem \(\mathcal{F}^{-1} \mathcal{F} f = f \) works.

2. Boas 12.6, 12.10, 12.12, 12.24 (read pages 381-832), 12.27, 12.34 (read page 384).

3. (a) Show that if \(f \) is real-valued, then \(\hat{f}(-\alpha) = \overline{\hat{f}(\alpha)} \).

(b) Show that if \(f \) is even then \(\hat{f} \) is even, and if \(f \) is odd then \(\hat{f} \) is odd.

What do (a) and (b) together say about the Fourier transform of a real even function? A real odd function?

(c) Let \(f^{rev}(x) = f(-x) \) be the reversal/reflection of \(f \). Show that
\[
\mathcal{F}^{-1} f = \mathcal{F} f^{rev}.
\]

For this problem, you have to ignore the ‘type’ of \(f \) (i.e., whether it is a function of \(x \) or of \(\alpha \)) and treat \(\mathcal{F} \) and \(\mathcal{F}^{-1} \) simply as operators which take a function and spit out another function.

4. (a) Show that \(f \ast g = g \ast f \).

(b) Use 1c and the fact that
\[
\mathcal{F}(f \ast g) = \sqrt{2\pi} \mathcal{F} f \cdot \mathcal{F} g
\]
to show that
\[
\mathcal{F}(f \cdot g) = \frac{1}{\sqrt{2\pi}} \mathcal{F} f \ast \mathcal{F} g,
\]
i.e., that the Fourier transform turns multiplication into convolution.

5. Let
\[
I = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-x^2/2} \, dx.
\]

Express the integral
\[
I^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2/2} e^{-y^2/2} \, dx \, dy
\]
in polar coordinates, and use this expression to conclude that \(I = 1 \).
6. Use the Fourier transform to solve the heat equation on an infinite line:

\[
\frac{d}{dt} u(x, t) = \frac{d^2}{dx^2} u(x, t)
\]

with initial conditions

\[u(x, 0) = e^{-x^2/2}. \]

Describe the distribution of heat at time \(t \) in words. What happens as \(t \to \infty \)?

7. For a function \(f : \mathbb{R} \to \mathbb{C} \) with \(f(0) \neq 0 \), define the rectangular width of \(f \) to be the width of a rectangle with height \(f(0) \) and area equal to that under the graph of \(f(x) \), i.e.

\[
W_f = \frac{1}{f(0)} \int_{-\infty}^{\infty} f(x) dx.
\]

Show that the product of the rectangular width of a function and that of its Fourier transform is \(2\pi \), i.e.

\[W_f \cdot W_{Ff} = 2\pi. \]

Thus, if a function has small rectangular width, its Fourier transform must have large rectangular width.

This can be viewed as a baby version of the Uncertainty Principle, which says that the product of the variance of \(f \) and the variance of \(Ff \) is large. (This is the same as the uncertainty principle in physics, since position and momentum are Fourier transforms of each other).