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1 Chapter 0

First we recall Caratheodory’s Theorem.

Caratheodory Theorem Let T ⊂ Rn be any subset and take a point x in
the convex hull of T . Then there are y1, · · · ym in T such that

x =
∑
i

λiyi with
∑
i

λi = 1

Further m always satisfies m ≤ n+ 1.

Vershynin motivates the book by pointing out that a remarkable “Approxi-
mate Caratheorodory Theorem” holds.

Approximate Caratheodory Theorem Let T ⊂ Rn be a set of bounded
diameter and x be in the convex hull of T . For any k ∈ N, we can find points
x1, · · ·xk such that

‖x− 1

k

k∑
j=1

xi‖2 ≤
1√
k

This is remarkable since it is independent of dimension n! The proof uses
the probabilistic method and can be found in the book.
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Application We now observe that this theorem lets us get an upper bound on
the metric entropy of a polyedral set in Rn. First some review.

“Review” of Metric Entropy: For any subset K in Rn, recall that the covering
number of K is given by

cov(ε,K) = the minimum number of balls of radius ε that are needed to cover K.

The log of this quantity is roughly what we call metric entropy.

The Application: Let P be a polyhedral set with N vertices. We may now use
the theorem above, to get the bound

cov(ε, P ) ≤ Nd
1
ε2
e

2 Chapter 2

We now move to Concentration Inequalities. The basic intuition follows from a
simple example.

Example Let Xi be iid Bernoulli 0-1 random variables. Take SN to be the
number of head sin N tosses,

∑N
i=1Xi. Using Chebyshev we get

P
[
SN ≥

3

4

]
≤ 4

N

However, the CLT suggests this tail should look like a Gaussian tail which
goes like e−cN . Can this argument be made rigorous? No, because the error in
CLT decays like

√
N - ∣∣∣P[S∗

N ≥ t]− P[Z ≥ t]
∣∣∣ ≤ C√

N

The intuition is correct though and this is formalized in Hoeffding’s Inequal-
ity : For any positive ai,

P
[∑

i

aiXi ≥ t
]
≤ exp

( −t2
2‖a‖22

)
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General Setup We discussed some large classes of random variables for which
bounds like these exist. They are

Sub-Gaussian A random variable is sub-Gaussian with parameter σ if for all
λ real

Eeλ(X−EX) ≤ eλ
2σ2/2.

Sub-Exponential A random variable is sub-exponential with parameters (σ, α)
if for all λ with |λ| ≤ α

Eeλ(X−EX) ≤ eλ
2σ2/2

Concentration inequalities hold for these classes of random variables as well.
For example

Theorem Let Xi be independent sub-Gaussian with parameter σi. Then for
Sn =

∑N
i=1Xi,

P
[
SN − ESN ≥ t] ≤ exp

( −ct2∑N
i=1 σ

2
i

)
In broad strokes, we start with {

∑
iXi > t} and replace that with {e

∑
iXi >

et}. Now we apply Markov’s inequality and exploit independence + the as-
sumed estimates to get the inequality. The sharpness of one’s constants de-
pends on how hard you work in bounding the generating function (as always).
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