
Chapter 4

The complex exponential in
science

Superposition of oscillations and beats

In a meditation hall, there was a beautiful, perfectly circular brass bowl.
When you struck it with the leather covered hammer, it produced a beautiful
pure tone. The pressure variation δp of the sound was a pure sinusoid of some
angular frequency ω:

δp α cosωt = Re eiωt. (4.1)

Given any standing wave of the bowl, you could get another of exactly the
pitch by rotation about the axis of circular symmetry. But then came a
barbarian which whacked the bowl really hard and he put a dent in it. No
more perfect circular symmetry. Now there are two distinct standing waves,
with two close but nevertheless different frequencies ω1 and ω2 with |ω1 −
ω2| � ω1+ω2

2
. When you hit the dented bowl, you get a superposition (that

is, linear combination) of the two standing waves, and the sound you hear is
a superposition of two sinusoids with frequencies ω1 and ω2. In place of (4.1)
we have

δp = Re{a1e
iω1t + a2e

iω2t} (4.2)

where a1 and a2 are complex constants. Due to the difference between the
frequencies ω1 and ω2, the two vibrations in (4.2) slowly drift from “in phase”
when they add or “constructively interfere” to “out of phase”, when they can-
cel each other, or “destructively interfere”. This is the familiar phenomenon
of beats. Let’s look at (4.2) with a1 = a2 = 1. Introducing the phases
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θ1 := ω1t and θ2 := ω2t, (4.2) with a1 = a2 = 1 reads

δp = Re{eiθ1 + eiθ2}. (4.3)

To see the beats “hiding in (4.3)”, we “factor out the average of the phases”.
That is, rewrite (4.3) as

δp = Re

{
e
i θ1+θ2

2

(
e
i θ1−θ2

2 + e
−i θ1−θ2

2

)}

= Re

{
e
i θ1+θ2

2 2 cos

(
θ1 − θ2

2

)}

= 2 cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
,

or finally,

δp = 2 cos

(
ω1 + ω2

2
t

)
cos

(
ω1 + ω2

2
t

)
. (4.4)

Figure 4.1 is the graph of δp versus time based on (4.4). The beat period

Figure 4.1

(time interval between moments of complete destructive interference) is

T =
2π

|ω1 + ω2|
.
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If |a1| 6= |a2| the analysis has to dig a little deeper. For instance, take
a1 = 1, a2 = 1

2
. Then we are dealing with

eiθ1 +
1

2
eiθ2 = e

i θ1+θ2
2

(
e
i θ1−θ2

2 +
1

2
e
−i θ1−θ2

2

)

= e
i θ1+θ2

2

(
3

2
cos

θ1 − θ2

2
+
i

2
sin

θ1 − θ2

2

)
.

(4.5)

Next we express the “complex beat amplitude” in parentheses in polar form.
That is, seek modulus R and argument ψ so

Reiψ =
3

2
cos

θ1 − θ2

2
+
i

2
sin

θ1 − θ2

2
. (4.6)

Then (4.5) becomes

eiθ1 +
1

2
eiθ2 = Re

i
(
θ1+θ2

2
+ ψ

)
and the real part is

R cos

(
θ1 + θ2

2
+ ψ

)
.

It is now clear that R as a function of θ1 − θ2 is the beat amplitude. From
(4.6) we compute

R =

√
9

4
cos2

(
θ1 − θ2

2

)
+

1

4
sin2

(
θ1 − θ2

2

)
=

√
1

4
+ 2 cos2

(
θ1 − θ2

2

)
,

or expressed as a function of time,

R =

√
1

4
+ 2 cos2

(
ω1 − ω2

2
t

)
.
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Figure 4.2 shows the graph of δp versus time in (4.2) with a1 = 1, a2 = 1
2

.

Figure 4.2

Waves, wave packets and group velocity

Consider the sinusoidal traveling wave in one space dimension

ψ = cos(kx− ωt) = Re{ei(kx−ωt)}. (4.7)

Here, k and ω are given constants. θ := kx − ωt is called the phase of
the wave. The level curves in (x, t) spacetime with θ ≡ 2πn, n = integer
are “crests” where ψ = +1, θ ≡ 2πn + π correspond to “troughs” where
ψ = −1. In Figure 4.3 we’ve plotted world lines of crests. If you sit at a
fixed position x, crests pass by you, one per time period 2π

ω
. The constant

ω which measures the time rate of change of phase at fixed x is called the
angular frequency of the wave. If you take a “snapshot” of the wave at fixed
time, you’ll observe the spatial period 2π

k
. The number of spatial periods in

an interval of length L is kL
2π

, so k
2π

is the “density of waves” seen at fixed
time. Perhaps this is the reason for calling k the wavenumber. We see from
(4.7) that a world line x = x(t) of constant phase has

ẋ = vp :=
ω

k
(4.8)

vp in (4.8) is called the phase velocity.
If we add two traveling waves whose wavenumbers k1 and k2 and frequen-

cies ω1 and ω2 close to each other, we’ll get “beats in spacetime”: The sum
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Figure 4.3

of two waves with the phases θ1 = k1x− ω1t and θ2 = k2x− ω2t is

ψ = Re{eiθ1 + eiθ2}

= cos

(
θ1 + θ2

2

)
cos

(
θ1 − θ2

2

)
= cos

(
k1 + k2

2
x− ω1 + ω2

2
t

)
cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)
.

(4.9)

The first factor

cos

(
k1 + k2

2
x− ω1 + ω2

2
t

)
(4.10)

has the form of a traveling wave whose phase velocity is ω1+ω2

k1+k2
. (4.10) is

often called “the carrier wave”. In the limit ω1, ω2 both approaching ω, and
k1, k2 approaching k, the carrier wave phase velocity converges to vp in (4.8).
The second factor in (4.9),

cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)
(4.11)
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is called the envelope. If k1 6= k2, (4.11) represents a traveling wave of velocity
ω1−ω2

k1−k2 .
The physical context of the waves (4.7) often specifies a dispersion re-

lation, so the frequency ω is some definite function of k, ω = ω(k). Take
k1 = k, ω1 = ω(k), k2 = k + κ and ω2 = ω(k + κ). The envelope velocity is

ω2 − ω1

k2 − k1

=
ω(k + κ)− ω(k)

κ
,

which converges to the group velocity

vg := ω′(k) (4.12)

as κ→ 0.
Here is a physical example, of water waves whose height is much less than

the wavelength, and the wavelength is much less than the depth of ocean.
The dispersion relation is

ω(k) =
√
gk. (4.13)

Here, g is the gravity acceleration, and
√
gk is the only combination of g and

k that has the physical unit of 1 ÷ time. From (4.13) we compute phase and
group velocities,

vp =
ω

k
=

√
g

k
, vg =

1

2

√
g

k
=

1

2
vp.

Suppose you are in a fishing boat, and the wave pattern depicted in Figure 4.4
is approaching you. If you fix your attention on individual crests, you see

Figure 4.4

them emerge from the “rear end of a wave packet”, as if from nothing, and
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disappear into the front end. This is because the crests moving at the phase
velocity vp are twice as fast as the envelope, which moves at the group velocity
vg = 1

2
vp.

The superposition of just two traveling waves like (4.7) is extremely spe-
cial. Much more commonly, we observe a superposition of waves with a
continuous range of wavenumbers. Such a superposition is expressed as an
integral,

ψ(x, t) = Re

∫ ∞
−∞

ψ̂(k)ei(kx−ω(k)t)dk. (4.14)

Think of (4.14) as a linear combination of individual traveling waves ei(kx−ω(k)t)

with k ranging over all real values, and ψ̂(k) represents the “coefficients” of
the linear combination. We’ll call ψ̂(k) the spectrum of the wavefield (4.14).

Let’s take the spectrum confined to some narrow range of wavenumbers
about some fixed K. For instance,

ψ̂(k) =


1

2ε
in |k −K| < ε,

0 in |k −K| > ε.

(4.15)

Figure 4.5 is the graph of the spectrum ψ̂(k). The area under the graph is
one, ∫ ∞

−∞
ψ̂(k)dk = 1,

and its width is

∆k = 2ε. (4.16)

First, let’s look at the wavefield (4.14) at time zero,

ψ(x, 0) = Re
1

2ε

∫ K+ε

K−ε
eikxdk. (4.17)

By the integral formula (3.33) for the complex exponential, we have

1

2ε

∫ K+ε

K−ε
eikxdk =

1

2εix
{ei(K+ε)x − ei(K−ε)x}

= eiKx
sin εx

εx
,
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Figure 4.5

and (4.17) becomes

ψ(x, 0) = cosKx
sin εx

εx
. (4.18)

Here, cosKx is the “carrier wave” seen at t = 0, and sin εx
εx

the envelope. An
essential difference from the superposition of just two waves in (4.9) is that
the envelope in (4.18) decays to zero as |x| → ∞. The wavefield (4.14) is
truly localized in space. Figure 4.6 depicts ψ(x, 0) in (4.12). The zeros of
the envelope sin εx

εx
closest to x = 0 define a characteristic width ∆x

∆x =
2π

ε
. (4.19)

Notice that the product of ∆x and ∆k in (4.16), (4.19) is independent of ε,

∆x∆k = 4π.

Qualitatively, we say that the widths of spectrum and wave packet are re-
ciprocals to each other. This is generally true for superpositions of complex
exponentials eikx.
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Figure 4.6

Here is another important example: The spectrum is the Gaussian,

ψ̂(k) =
1

2
√
πε
e
− (k−K)2

4ε2 . (4.20)

Figure 4.7 is is graph. The Gaussian (4.20) has certain similarities to the
“skyscraper” shaped spectrum in (4.15). The area under the graph in Fig-
ure 4.7 is

∫∞
−∞ ψ̂(k)dk = 1, and the “width” is proportional to ε: In Figure 4.7,

the labeled width ∆k = 2ε corresponds to the interval where ψ̂(k) > 1
e

max ψ̂.
Given the Gaussian spectrum (4.20), the wavefield (4.14) at t = 0 is

ψ(x, 0) = Re
1

2
√
πε

∫ ∞
−∞

e
− (k−K)2

4ε2
+ ikx

dk.

Changing the variable of integration to

u :=
k −K

2ε
(4.21)

gives

ψ(x, 0) = Re
1√
π

∫ ∞
−∞

e−u
2+i(K+2εu)xdu

= Re
eiKx√
π

∫ ∞
−∞

e−u
2+2u(iεx)du.

(4.22)
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Figure 4.7

Notice how the change of variable nicely separates out the carrier wave eiKx.
The remaining integral succumbs to a famous trick, called “completing the
square”: Set a := iεx and write the exponent in (4.22) as

−u2 + 2aκ− a2 + a2 = −(u− a)2 + a2,

so ∫ ∞
−∞

e−u
2+2audu = ea

2

∫ ∞
−∞

e−(u+a)2du. (4.23)

If a were real, we’d say that “the origin of u does not matter, and the area
under the Gaussian e−(u−a)2 is

√
π, independent of a”. We’d conclude that

the right-hand side of (4.23) is
√
πea

2
. But a := iεx is pure imaginary. Here

is another instance in which a result from real variable calculus extends to
the complex plane: We have∫ ∞

−∞
e−u

2+2audu =
√
πea

2

(4.24)

for all complex a. An exercise outlines the plausibility based on contour
integration. From (4.24) with a = iεx and (4.22) it follows that

ψ(x, 0) = Re eiKxe−(εx)2 = e−(εx)2 cosKx. (4.25)
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This wave packet has the same carrier wave cosKx as (4.18), but a Gaus-
sian envelope c−(εx)2 . We take the width of this envelope to be ∆x = 2

ε
,

corresponding to the interval of x where e−(εx)2 > 1
c

. For the wave packet
based on Gaussian spectrum, we have ∆x∆k = 4 independent of ε. What is
important here is the independence from ε. The numerical prefactor (4π for
the “skyscraper” spectrum, or 4 for the Gaussian) depends on (unimportant)
details of how ∆x and ∆k are defined.

We now “turn on time” and examine how the wavefield (4.14) moves.
We’ll work out the case of the “skyscraper” spectrum with ψ̂(k) given by
(4.15). Then (4.14) reads

ψ(x, t) = Re
1

2ε

∫ K+ε

K−ε
ei(kx−ω(k)t)dk.

Changing the integration variable to u in (4.21) helps. We find

ψ(x, t) = Re
eiKx

2

∫ 1

−1

eiεxu−ω(K+εu)tdu. (4.26)

In the limit ε→ 0, we employ the first order Taylor polynomial of ω(K+εu)
in ε,

ω(K − εu) = ω(K)− εuω′(K) +O(ε2)

and (4.26) becomes

ψ(x, t) = Re ei(Kx−ω(K)t) 1

2

∫ 1

−1

eiε(x−ω
′(K)t)+O(ε2)du.

We see the carrier wave nicely separated out. We approximate the remaining
integral by ignoring the O(ε2) truncation error, and we get

ψ(x, t) = cos(Kx− ω(K)t)
sin ε(x− ω′(K)t)

ε(x− ω′(K)t)
. (4.27)

We see that the envelope retains the same shape as it has at time zero, and
translates at the group velocity ω′(K).

Complex exponential solutions of ODE

Figure 4.8 shows an elastic rod suspended from the ceiling by an array
of closely spaced spring-like threads. The elevation of the rod relative to its
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Figure 4.8

rest configuration is denoted by y = y(x) in x ≥ 0. The local mechanical
equilibrium of the rod is expressed by the (dimensionless) ODE

y(4)(x) = −y(x). (4.28)

Here y(4)(x) is the vertical force per unit length that must be applied to the
rod to maintain a given shape y = y(x).1 For the hanging rod in Figure 4.8,
this force is provided by the spring-like threads and gravity. Acting together
they provide a net restoring force −y per unit length toward the x-axis.

The ODE (4.28) is linear and translation invariant in x. Translation
invariance means that if y(x) is a solution, so is y(x+ ε) for any constant ε.

1This fourth derivative “bending force” derives from the principal of virtual work: The
elastic potential energy of the rod due to bending is

e =
1
2

∫ ∞

0

(y′′(x))2dx.

Here, the second derivative y′′ represents local bending, and 1
2 (y′′)2 represents the local

bending energy per unit length. Suppose we change the rod configuration from y(x) to
y(x) + (dy)(x). The resulting differential of e is

de =
∫ ∞

0

y′′(x)(dy)′′dx =
∫ ∞

0

y(4)(x)(dy)(x)dx.

The last equality is two integrations by parts, assuming dy and (dy)′ vanish at x = 0 and
x =∞. de is the work done in the deflection from y(x) to y(x) + (dy)(x), so y(4)(x) is the
force per unit length that is applied.
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Such ODE have elementary solutions in the form of exponentials

y = ezx (4.29)

where z is a constant, to be determined. Substituting (4.29) into ODE (4.28),
we find that z satisfies the characteristic equation

z4 = −1.

Hence, z is one of the fourth roots of −1, depicted in Figure 4.9. The

Figure 4.9

exponential solution corresponding to z = e
iπ

4 = 1+i√
2

is

e

x√
2
e
i x√

2
. (4.30)

The real and imaginary parts of a complex solution are each real solutions
in their own right, hence we obtain from (4.30) real solutions

e

x√
2

cos
x√
2
, e

x√
2

sin
x√
2
. (4.31)
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The ODE (4.28) is invariant under “x-reversal”, meaning that y(−x) is a
solution if y(x) is. Hence, we obtain two more solutions from (4.31),

e
− x√

2
cos

x√
2
, e
− x√

2
sin

x√
2
. (4.32)

The general solution of the fourth order ODE (4.28) consists of all linear
combinations of the four elementary solutions in (4.31), (4.32).

We examine the rod configuration that results from “pivoting the rod” at
x = 0. The rod is “pinned” to (0, 0), but we can tilt it from the horizontal by
an attached lever as depicted in Figure 4.8. Hence, the boundary conditions
at x = 0 are y(0) = 0, y′(0) = m > 0. As x → +∞, y(x) presumably
asymptotes to the rest configuration y = 0. The zero boundary conditions
at x = 0, ∞ single out solutions proportional to

e
− x√

2
sin

x√
2

and the solution with y′(0) = m is

y(x) =
√

2me
− x√

2
sin

x√
2
. (4.33)

Figure 4.8 depicts this configuration, with its oscillatory decay to zero as
x→ +∞.

What is the torque required to maintain the tilt y′(0) = m > 0? The
total work to tilt the rod from y′(0) = 0 to y(0) = m > 0 is equal to the
potential energy

u =
1

2

∫ ∞
0

{(y′′)2 + y2}dx. (4.34)

Here 1
2
(y′′)2 is the bending energy per unit length and 1

2
y2 is associated with

the restoring force −y due to joint action of the spring-like threads and
gravity. Substituting the solution (4.33) for y(x) into (4.34), we obtain u as
a function of m, and the torque (for small m) is du

dm
. This calculation, and a

deeper investigation of a “torque balance” boundary condition at x = 0 are
presented in an exercise.
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Resonance

The analysis of mechanical and electrical networks often leads to linear
differential equations with constant coefficients subject to sinusoidal forcing.
A most fundamental example is the damped, forced harmonic oscillator. The
(dimensionless) ODE is

ẍ+ εẋ+ x = cosωt, (4.35)

where ε is a dimensionless damping coefficient and ω is the angular frequency
of the forcing, relative to the natural frequency. Any solution x(t) of (4.35)
asymptotes to a unique periodic solution as t → ∞. The periodic solution
takes the form

x(t) = R(ω) cos(ωt+ θ(ω)) (4.36)

where the amplitude R(ω) and phase shift θ(ω) are functions of ω to be
determined from the ODE (4.35).

While it is possible to substitute (4.36) into (4.35) and derive equations
for R(ω) and θ(ω) by massive use of trig identities, the streamlined analysis
based on the complex exponential is vastly better. First, we replace (4.35)
by the ODE

z̈ + εż + z = eiωt (4.37)

for the complex valued function of time, z(t). Given z(t), x(t) := Re z(t)
satisfies (4.35). Next, we compute the solution of (4.37) proportional to eiωt,

z(t) = a(ω)eiωt (4.38)

where a = a(ω) is a complex amplitude. Substituting (4.38) into (4.37) we
obtain a formula a(ω),

(−ω2 + iεω + 1)a = 1,

or

a(ω) =
1

1− ω2 + iεω
. (4.39)

If we express a in polar form,

a = Reiθ
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then z = Rei(ωt+θ) and x = R cos(ωt+θ), so presto bingo we see that R and θ
in (4.36) are precisely the modulus and argument of the complex amplitude
a. The amplitude R is

R(ω) = |a| = 1√
(1− ω2)2 + ε2ω2

. (4.40)

The graph of R(ω) for ω > 0 and 0 < ε� 1 is depicted in Figure 4.10: The

Figure 4.10

sharp peak of R(ω) near ω = 1 is called resonance. The examination of the
phase shift θ(ω) gives some mechanical intuition of resonance. There is a
nice geometric description of θ(ω): First, write (4.39) as

a =
1− ω2 − iεω

(1− ω2)2 + ε2ω2
,

so
θ = arg(ζ(ω)) (4.41)

where
ζ(ω) := 1− ω2 − 2iεω. (4.42)
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(4.42) is the parametric representation of a parabola in the complex plane,
depicted in Figure 4.11. This parabola is oriented in the direction of increas-

Figure 4.11

ing ω. As ω increases from zero to one, we see that θ decreases from 0 at
ω = 0 to −π as ω → +∞, passing through θ = −π

2
at ω = 1. For 0 < ε� 1,

ω = 1 is very close to the resonance peak at ω =
√

1− ε2

2
(see Figure 4.10).

The phase shift θ(1) = −π
2

indicates that the x-oscillation lags behind the
forcing by one quarter of a period. This is depicted in Figure 4.12a. Here

Figure 4.12

is what this phase lag means physically: When the oscillator (that is x(t))
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is passing through x = 0 with the maximum speed, the force is also at its
maximum, and pushes in the same direction as the velocity. This is depicted
in Figure 4.12b. You may have experienced the pleasure of shaking a stop
sign pole back and forth. When you create a juicy resonance, you can actu-
ally feel how your maximum push or pull happens when the pole is in the
middle of a swing, in the upright configuration, and moving the fastest. Your
applied force at these times is in the same direction as the motion.

AC electrical networks

Figure 4.13a depicts a resistor, connected at one end to a voltage supply,

Figure 4.13

and the other, to ground (“ground” means voltage zero). The electric current
flowing through the resistor is proportional to the voltage drop across it,
according to Ohm’s law

V (t) = RI(t). (4.43)

The positive proportionality constant R is called the resistance. Figure 4.13b
depicts the simplest capacitor, consisting of two conducting electrodes one
connected to the voltage supply, the other to ground, and insulated from
each other. When the voltage supply induces charge Q(t) on the electrode
connected to it, an opposite and equal charge −Q(t) is induced on the elec-
trode connected to ground. The voltage drop from the +Q to −Q electrodes
is proportional to V according to

Q(t) = CV (t). (4.44)
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The positive constant C is called the capacitance. Taking the time derivative
of ( ) gives

V̇ (t) = CI(t). (4.45)

Here I(t) := Q̇(t) is the electric current into the +Q electrode. Since charges
of opposite sign are entering the −Q electrode at the same rate, the electric
current from the −Q electrode to ground is also I(t).

We examine the situation of “alternating current” (AC) in which V (t) and
I(t) are sinusoidal in time. As in the analysis of the harmonic oscillator, we
introduce formal complex-valued voltages and currents expressed as complex
exponentials. Physical voltages and currents are extracted from real parts.
That is the voltage V (t) and current I(t) are taken to be

V (t) = V eiωt, I(t) = Ieiωt, (4.46)

where V and I are complex voltage and current amplitudes. From the current-
voltage relations (4.43), (4.45) for resistor and capacitor, we deduce linear
relations between voltage and current amplitudes,

V = RI (resistor),

V =
I

iωC
(capacitor).

(4.47)

Resistors and capacitors are examples of linear devices. A linear device is
characterized by a complex impedance Z = Z(ω), so that voltage and current
amplitudes satisfy

V = Z(ω)I. (4.48)
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For instance, look at a resistor and capacitor in parallel, as in Figure 4.14.
Given V , the complex current amplitudes are V

R
and iωCV , and the ampli-

Figure 4.14

tude I of the total current from the voltage supply to ground is the sum

I =

(
1

R
+ iωC

)
V. (4.49)

Hence the impedance of the resistor and capacitor in parallel is Z(ω) which
satisfies

1

Z(ω)
=

1

R
+ iωC. (4.50)
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In general, two devices in parallel as in Figure 1.15a, have “composite”

Figure 4.15

impedance Z which satisfies

1

Z
=

1

Z1

+
1

Z2

. (4.51)

For the two devices in series as in Figure 1.15b, the current through each
device is the same, and the voltage drops add, and this leads to the composite
impedance which is the sum

Z = Z1 + Z2. (4.52)

Frequency dependent response

The impedance as a function of frequency quantifies the amplitude and
phase of the current relative to voltage. First, write (4.48) as

I =
V

Z(ω)
= A(ω)eiθ(ω)V, (4.53)

where A(ω) and θ(ω) are the modulus and argument of 1
Z(ω)

. Take V to be
real. Then the physical voltage and current as functions of time are

Re(V eiωt) = V cos(ωt),

Re(Ieiωt)− A(ω)V cos(ωt+ θ(ω)).
(4.54)

We se that D(ω) gives the magnitude of the current oscillation, relative to
the voltage oscillation, and θ(ω) represents a phase shift of current relative
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Figure 4.16

to voltage (phase lag if θ < 0, phase advance if θ > 0). For instance, consider
the resistor and capacitor in parallel, as in Figure 4.14, which has 1

Z(ω)
as in

(4.49). Figure 4.16 depicts 1
Z(ω)

as a vertical line ray in the complex plane
parametrized by ω > 0. We immediately see that

A(ω) =

√
1

R2
+ ω2C2 =

1

R

√
1 + (ωRC)2,

θ(ω) = arctan(ωRC).

(4.55)

Figure 4.17 shows the graphs of A(ω) and θ(ω). As ωRC → 0, we have
A → 1

R
, θ → 0, so the circuit becomes a pure resistor in the low frequency

limit. This is because most of the current goes through the resistor in the low
frequency limit. In the high frequency limit ωRC →∞, most of the current
goes through the capacitor, and we have A

ωC
→ 1, θ → π

2
which corresponds

to pure capacitance.
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Figure 4.17


