
Chapter 3

Complex variables

Complex numbers begin with the notion, that all quadratic equations with
real coefficients “ought” to have solutions. The quadratic equation x2+1 = 0
has no real solution, but since it “ought” to have a solution we’ll just say
that there is “some sort of number”, denoted i, whose square is −1:

i2 = −1. (3.1)

Formal linear combinations a + bi with a, b real arise naturally as formal
solutions of more general quadratic equations. For instance, the quadratic
equation

x2 − 4x + 13 = 0

is equivalent to (
x− 2

3

)2

+ 1 = 0,

and formally, we have x−2
3 = ±i, so x = 2 ± 3i.

The usual heuristic introduction to complex numbers begins like this:
“Repesent a complex number as z = a + bi, with a, b real. You add and
multipy complex numbers, as if the usual laws of arithmetic hold, with the
additional feature, i2 = −1.” The formal sum of two complex numbers can
be arranged into another complex number:

(a + bi) + (c + di) = (a + c) + (bi + di) = a + c + (b + d)i.

The first equality uses commutative and associate laws of addition, and the
second, the distributive law. For complex multiplication, we have

(a + bi)(c + di) = ac + adi + bci + bdi2 = (ac− bd) + (ad + bc)i.
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Since the sum and product of complex numbers are complex numbers, we
say that the complex numbers are closed under addition and multiplication.
Apparently we don’t need to enlarge the complex numbers beyond the set of
a + bi with a, b real.

The initial heuristics informs the official definition: The set C of complex
numbers consists of ordered pairs of real numbers

z = (a, b) (3.2)

subject to binary operations of addition and multiplication, defined by

(a, b) + (c, d) = (a + c, b + d) (3.3)

(a, b)(c, d) = (ac− bd, ad + bc). (3.4)

In (3.2), Re z := a and Im z := b are called real and imaginary1 parts of the
complex number z. We review the basic arithmetic and geometry of complex
numbers within the framework of the official definition.

• The definitions (3.3), (3.4) of complex addition and multiplication, and
the ‘laws’ of real arithmetic (commutative and associative laws of ad-
dition and multiplication, distributive laws) imply that the same arith-
metic laws extend to the complex numbers.

• z = (a, 0) corresponds to the real number a. By the multiplication rule
(3.4), we have

(0, 1)2 = (0, 1)(0, 1) = (−1, 0).

Since (−1, 0) corresponds to −1, we identify (0, 1) with i,

i = (0, 1).

The general complex number in (3.2) can be represented as

z = (a, b) = (a, 0) + (b, 0)(0, 1),

which corresponds to the traditional notation z = a + bi. Henceforth
we revert to the traditional notation.

• The complex number z = x + yi is represented geometrically as a
point in the plane with cartesian coordinates x and y, as in Figure 3.1.
We call this one-to-one correspondence between complex numbers and
points in the plane the complex plane.

1imaginary, as in “we just imagined them”.
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Figure 3.1

Given z = x + yi we have iz = −y + xi. Geometrically, multiplication
by i means rotation by π

2 counterclockwise radians. This is visualized in
Figure 3.1. Multiplication by i2 represents rotation by π radians, and rotation
of z by π radians produces −z. We calculate i2z = i(iz) = i(−y + ix) =
−i− iy = −z. The mysterious identity i2 = −1 has been deconstructed into:
“Two successive ‘left faces’ equals one ‘about face’.”

In the real number system, zero and one are distinguished as additive and
multiplicative identities, and they retain these roles in the complex number
system. For any complex number z, z + 0 = z, and z · 1 = z. z = a + ib has
the unique additive inverse −z := −a + (−b)i, so z− z := z + (−z) = 0. For
z "= 0, there is a unique multiplicative inverse z−1 which satisfies zz−1 = 1.
Setting z−1 = α + βi, we have zz−1 = aα − bβ + (bα + aβ)i = 1 = 1 + 0i,
and equating real and imaginary parts,

aα− bβ = 1,

bα + aβ = 0.
(3.5)

The determinant of this linear system for α, β is a2+b2 "= 0, since z = a+ib "=
0 means “at least one of a or b non-zero”. Geometrically, |z| :=

√
a2 + b2,

called the modulus of z, is the length of displacement from (0, 0) to (a, b) in
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the complex plane. The solution of (3.5) for α, β is α = a
a2+b2 , β = −b

a2+b2 , so

z−1 =
a− bi

a2 + b2
=

z

|z|2 . (3.6)

Here,

z := a− bi (3.7)

is called the complex conjugate or conjugate of z. Geometrically, conjugation
of z is reflection about the real axis. Figure 3.2 depicts the geometric mean-

Figure 3.2

ings of modulus and conjugate. As in real arithmetic, “z1 divided by z2 "= 0
means (z1)(z

−1
2 ) and we’ll denote it z1

z2
just like in real arithmetic.

There are simple properties of conjugation that you need to relate to, like
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a fish relates to water. They are

zz = |z|2,
z = z,

z1 + z2 = z1 + z2,

z1z2 = z1z2,(
z1

z2

)
=

z1

z2
, z2 "= 0.

(3.7)

The last three identities are a rare instance for which “mindless manipulation
of symbols” actually works.

Here is a typical example of the roles of conjugate and modulus in routine
algebraic calculations: We want to find the real and imaginary parts of

(
1+i
1−i

)3
.

We calculate
(

1 + i

1− i

)3

= (1 + i)3

(
1

1− i

)3

= (1 + i)3

(
1 + i√

2

)3

=
1

2
√

2
(1 + i)6. (3.8)

Next, binomial expansion:

(1 + i)6 = 1 + 6i + 15i2 + 20i3 + 15i4 + 6i5 + i6

= (1− 15 + 15− 1) + (6− 20 + 6)i = −8i.
(3.9)

We used the sixth row of Pascal triangle, and i2 = −1, i3 = −i, etc. Com-
bining (3.8), (3.9) we have

(
1 + i

1− i

)3

= − 4√
2
i.

Properties of the modulus which are corollaries of conjugation identities
(3.7) are

|z1z2| = |z1| |z2|

and ∣∣∣∣
z1

z2

∣∣∣∣ =
|z1|
|z2|

, z2 "= 0.

Notice that |z1 + z2| "= |z1| + |z2|. By visualizing z1 + z2 as vector addition
of z1 and z2 in the complex plane
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Figure 3.3

we discern the triangle inequality,

|z1 + z2| ≤| z1| + |z2|.

As a challenge for you: What geometric picture informs the inequality

|z1 − z2| > ||z1| −| z2||?

An essential connection between the algebra and geometry of complex
numbers is revealed by polar forms of complex multiplication and division.
The polar form of the complex number z = x + yi results by introducing
polar coordinates r, θ of the point (x, y) as depicted in Figure 3.4. The polar
form of z is

z = r(cos θ + i sin θ). (3.10)

Given z, r = |z| is uniquely determined. Not so the angle θ: For any integer
k we can replace θ by θ + 2πk in (3.10) and obtain the same z. For instance,
(3.10) with r = 1, and θ = π

4 or −7π
4 are both polar representations of 1 + i.

This is depicted in Figure 3.5. Sometimes we like to think of the angle θ
as a function of z "= 0. Any one of the possible angles θ associated with a
given z "= 0 is called an argument of z, denoted θ = arg z. The multivalued
character of arg z is displayed in the “spiral ramp” surface in Figure 3.6. The
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Figure 3.4

Figure 3.5
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Figure 3.6

metal shavings produced by drilling a large hole with a well-honed bit can
often look like this. A given value of z "= 0 is represented by a vertical line.
Its intersections with the spiral ramp correspond to the values of arg z.

Given polar forms of complex numbers z1 and z2, the polar form of the
product is computed from

z1z2 = r1(cos θ1 + i sin θ1)r2(cos θ2 + i sin θ2)

= r1r2{cos θ1 cos θ2 − sin θ1 sin θ2 + i(sin θ1 cos θ2 + cos θ1 sin θ2)}
= r1r2{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

(3.11)
Geometrically, complex multiplication amounts to multiplying moduli, and
adding arguments (that is, angles). If r2 "= 0, we find that the polar form of
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quotient z1
z2

has modulus r1
r2

and its argument is the difference of arguments
θ1 − θ2.

As a first simple exercise, let’s reconsider the calculation (3.9). The polar
version: We have 1+i =

√
2
(
cos π

4 + i sin π
4

)
, so (1+i)6 = 8

(
cos 3π

2 + i sin 3π
2

)
=

−8i, and the brutal binomial expansion is nicely side-stepped.

The next example leads into a most important application of the polar
form: Let z = −1

2 +
√

3
2 i = cos 2π

3 + i sin 2π
3 . Then z3 = cos 2π + i sin 2π =

1 + 0i = 1, so z is evidently a complex cube root of one, in addition to the
usual real cube root 1. By conjugation properties z3 = 1 implies z3 = 1 as
well, so we have three cube roots of one, equally spaced around the unit circle.
The general construction of complex n-th roots z of any complex number w

Figure 3.7

goes like this: Put w in polar form w = ρ(cos ϕ+ i sin ϕ), and seek n-th roots
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in polar form, z = r(cos θ + i sin θ). We have

zn = rn(cos nθ + i sin nθ)

= ρ(cos ϕ + i sin ϕ) = w.
(3.12)

The moduli on both sides are equal, so

r = ρ
1
n ,

where the right-hand side is the usual positive n-th root of ρ. Next, observe
that (3.12) with rn = ρ holds if the angles nθ and ϕ are equal, and also if ϕ
and nθ differ by an integer multiple of 2π, so

nθ = ϕ + 2πk, or

θ =
ϕ

n
+

2π

n
k,

where k is an integer. In summary, we have n-th roots of w = ρ(cos ϕ+i sin ϕ)
given by

z = ρ
1
n

{
cos

(
ϕ

n
+

2π

n
k

)
+ i sin

(
ϕ

n
+

2π

n
k

)}
, (3.13)

where k is any integer. In (3.13), only k = 0, 1, . . . n − 1 yield distinct n-th
roots z. All other integers k just repeat one of these n values. Figure 3.8
visualizes the construction of n-th roots in (3.13), for n = 6. The construction
of complex n-th roots, and more generally, the complex solutions of n-th
degree polynomial equations, play essential roles in constructing solutions to
linear ODE and PDE that routinely arise in physical applications.
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Figure 3.8

Complex functions and their power series

There is a whole calculus of complex functions of a complex variable which
generalizes the usual calculus of functions of a real variable. This chapter
sets forth some essentials of this calculus which routinely arise in solutions
of ODE and PDE.

First, we recognize that complex functions of a complex variable are much
richer objects than real functions of a real variable. For each z in a region
D of the complex plane, the function f assigns a complex number w = f(z).
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As z “paints” the region D, the corresponding w’s typically “paint” a region
f(D) in the complex w plane. For any z = x+iy in D, the real and imaginary
parts of w = f(z) are functions of x and y, which we denote u(x, y), v(x, y).
Figure 3.9 depicts w = f(z) as a mapping from region D of z plane to region

Figure 3.9

f(D) of w plane.
As a simple example, consider the geometry of the mapping from D : x =

Re z > 0 into the w plane, given by w = z2. In this case,

u = x2 − y2, v = 2xy. (3.14)

For x > 0 fixed, (3.14) represents a parametric curve in the w plane, parametrized
by y. These curves are of course level curves of x in the w plane. Eliminating
y from (3.14), we obtain a relation between u and v parametrized by x,

u = x2 − v2

4x2
. (3.15)

Geometrically, (3.15) represents a parabola opening in the −u direction, and
w = 0 is the focus of the parabola. As x→ 0+, the parabola (3.15) becomes
a “hairpin” wrapped around the negative u axis, as depicted in Figure 3.10.
As x increases, starting from x = 0+, the parabolas fill out the whole w plane
except the negative u axis, so f(D) is the whole w plane minus the negative u
axis. An exercise treats the level curves of y, and other vector calculus details
of the mapping (x, y)→ (u(x, y), v(x, y)). The complex function w = z2 has
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Figure 3.10

an electrostatic interpretation: The level curves of x in the u, v plane are
level curves of the electric potential, due to a charged conductor along the
−u axis.

This agenda is to quickly establish the extensions of various essential func-
tions from real variable calculus to complex variable calculus. The biggest
prize of all for physicists is the extension of the real exponential function ex

to the complex exponential function ez. A most “hands on” approach is via
complex power series, which take the form

∞∑

0

an(z − a)n, (3.16)

where a and a0, a1, . . . are given complex constants. You can guess what
the “hands on” method is: In the power series (1.48) of your favorite real
function f(x), simply replace x by z!

We mitigate this “smash and grab” with some preliminaries about the
convergence of complex series. The infinite series

∞∑

1

ak (3.17)
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of complex constants ak converges if there is a complex number s so that

lim
n→∞

|a1 + a2 + . . . an − s| = 0.

That is, the modulus of the n-th partial sum of (3.17) minus s converges to
zero as n→∞. As in the case of real series, we say that the complex series
(3.17) converges absolutely if

∞∑

1

|ak|

converges. The only difference from the previous definition of absolute con-
vergence of real series is the meaning of |ak| as the modulus of complex
numbers ak. As in the case of real series, absolute convergence implies con-
vergence. By use of inequalities |Re z| ≤ |z|, | Im z| ≤ |z|, it readily follows
that the real and imaginary parts of a1 +a2 . . . an converge to real and imagi-
nary parts of s. So in practice, convergence of the complex series (3.17) is just
convergence of its real and imaginary parts. Having reduced convergence of
complex series to real series, we are “back to business as usual”, and the con-
vergence tests for real series come into play. For instance, 1+ i+1

2 + (1+i)2

4 +. . .

has an =
(

1+i
2

)n
so |an| =

(
1√
2

)n

and |an+1|
|an| = 1√

2
< 1, so the series is abso-

lutely convergent by the ratio test, and hence convergent.
We examine the convergence of complex power series like (3.16). Let’s

start with complex geometric series. The algebra of the “telescoping sum
trick” still applies because complex algebra is the same as real algebra. Hence,

sn := 1 + z + . . . zn−1 =
1− zn

1− z

for z "= 1. Observe that

∣∣∣∣sn −
1

1− z

∣∣∣∣ =
|z|n

|1− z| →
{

0 as n→∞, |z| < 1,

∞ as n→∞, |z| > 1.

Hence, we have

1 + z + z2 + · · · =
1

1− z
(3.18)

in |z| < 1, and divergence in |z| > 1. This phenomenon, of convergence inside
a circle, and divergence outside, in general. If the complex power series is in
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powers of z − a, then the disk of convergence is centered about z = a. For
instance, the ratio test applied to the moduli of terms in

∞∑

1

(z − 1− i)n

n(
√

2)n

indicates that the disk of convergence is

|z − 1− i| <
√

2.

Convergence on the boundary circle can be investigated on a case-by-case
basis. For instance, the geometric series

1 + z + z2 + . . .

diverges on |z| = 1, because the n-th term zn does not converge to zero as
n→∞. The series

1 +
z

12
+

z2

22
+

z3

32
+ . . . (3.19)

converges in |z| < 1 and diverges in |z| > 1, like the geometric series. But on
|z| = 1, the series of moduli, 1 + 1

12 + 1
22 + 1

32 + . . . , is convergent, so (3.19)
converges on |z| = 1.

The calculus of complex functions is scarcely begun. There is a whole
theory of differentiation and integration of complex functions. The notion of
real analytic functions (having all their derivatives in some interval) gener-
alizes to complex analytic functions in regions D of the complex plane. The
coefficients an in the power series (3.16) of an analytic function are expressed
as in the Taylor series (1.48), but now the f (n)(a) are complex derivatives of
f(z) evaluated at some z = a in the region D of analyticity, and so on. Here,
a choice is made: To leave these riches for a later course, so as to have time to
engage the complex exponential function, and its applications to ODE and
PDE of mathematical physics. This alone is almost overwhelming.

The complex exponential function

denoted by ez, is defined by simply substituting z = x + iy in place of x in
the real Taylor series

∑∞
1

xn

n! , so we have

ez :=
∞∑

0

zn

n!
. (3.20)



64 Chapter 3. Complex variables

The ratio test establishes the convergence of this series for all z. We deter-
mine explicit formulas for real and imaginary parts of ez as functions of x and
y. For y = 0, (3.20) reduces to the Taylor series of the usual real exponential
function ex. The next natural step is to explore its values along the y axis.
This is the famous Euler calculation:

eiy = 1 + iy +
(iy)2

2!
+

(iy)3

3!
+

(iy)4

4!
+

(iy)5

5!
+ . . .

=

(
1− y2

2!
+

y4

4!
− . . .

)
+ i

(
y − y3

3!
+

y5

5!
− . . .

)
,

or
eiy = cos y + i sin y. (3.21)

If the exponentiation property

ez1+z2 = ez1ez2 (3.22)

is true for complex numbers z1 and z2, we’d have

ez = ex+iy = exeiy = ex cos y + iex sin y,

and we’d identify
u := Re ez = ex cos y,

v := Im ez = ex sin y.
(3.23)

The proof of (3.22) can be pestered out of the series (3.20) and the binomial
expansion:

ez1ez2 =
∞∑

m=0

∞∑

n=0

zm
1

m!

zn
2

n!

=
∞∑

N=0

1

N !

N∑

m=0

N !

m!(N −m)!
zm
1 zN−m

2

=
∞∑

N=0

1

N !
(z1 + z2)

N = ez1+z1 .

The second equality is the same kind of rearrangement that was applied in the
derivation of the two-variable Taylor series (2.17): Sum over m, n so m+n =
N , and then sum over N . The third equality is the binomial expansion. In
summary, the real and imaginary parts of the complex exponential are indeed
given by (3.23).
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Relatives of the exponential function in the complex plane

Replacing x by z = x + iy in the real Taylor series for cosx and sin x
gives the extensions of cosine and sine into the complex plane. For instance,

cos z = 1− z2

2!
+

z4

4
− . . . (3.24)

and similarly for sin z. An attempt to determine the real and imaginary
parts of cos z by inserting z = x + iy into (3.24) and applying the binomial
expansion to (x + iy)n is awkward. Its much better to relate cos z and sin z
to the complex exponential. If we redo the “Euler calculation” (3.21) with z
replacing y, the algebra is exactly the same, leading to

eiz = 1− z2

2!
+

z4

4!
− · · · + i

(
z − z3

3!
+

z5

5!
− . . .

)

or
eiz = cos z + i sin z. (3.25)

Replacing z by −z in (3.25), and using the even and odd symmetry of cos z
and sin z, we have

e−iz = cos z − i sin z. (3.26)

We can solve (3.25), (3.26) for cos z and sin z:

cos z =
1

2
(eiz + e−iz), sin z =

1

2!
(eiz − e−iz). (3.27)

To find the real and imaginary parts of cos z as explicit functions of x and
y, we rewrite the first of equations (3.27) as

cos z =
1

2
(e−y+ix + ey−ix)

=
1

2
e−y(cos x + i sin x) +

1

2
ey(cos x− i sin x)

=
1

2
(ey + e−y) cos x− i

2
(ey + e−y) sin x,

or
cos z = cosh y cos x− i sinh y sin x. (3.28)

There is a similar calculation of the real and imaginary parts of sin z.
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The extension of the logarithm from the positive real axis to the complex
plane is best done by “inversion”: In the equation w = ez, exchange the roles
of w and z to get z = ew, and we “solve” for w = log z. Denoting the real
and imaginary parts of log z by u and v, we find that the real and imaginary
parts of the equation z = ew are

x = eu cos v, y = eu sin v.

We see that u = log r = log |z|, and v is one of the values of arg z, so

log z = log |z| + i arg z. (3.29)

log z is “multivalued” because of the multivalued character of arg z. (Recall
the “helical ramp” graph of arg z in Figure 3.11.) The annoying multival-
uedness goes away if we restrict the domain D of z’s, so its simply connected
and doesn’t contain the origin. Figure 3.11 is an amusing choice for D: As
you walk inside this “snail gut” from a to b, arg z continually increases, from
say 0 at a to 4π at b.
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Figure 3.11

Basic calculus of the complex exponential

Consider the complex function f(t) of real t, defined by

f(t) = ezt, (3.30)

where z = x + iy is a complex constant. t-differentiation of f(t) means
differentiation of its real and imaginary parts,

ḟ(t) := (Re f(t))· + i(Im f(t))·.

From (3.23), we have

f(t) = ext cos yt + iext sin yt,
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so
ḟ = xext cos yt− yext sin yt + i(xext sin yt + yext cos yt)

= (x + iy)(ext cos yt + iext sin yt) = zezt,

or
(ezt)· = zezt. (3.31)

Integration of f(t) means integration of real and imaginary parts according
to ∫ b

a

f(t)dt :=

∫ b

a

Re f(t)dt + i

∫ b

a

Im f(t)dt. (3.32)

From the definition and the fundamental theorem of calculus for real func-
tions, it follows that ∫ b

a

ḟ(t)dt = f(b)− f(a).

For f(t) = ezt, we have (with the help of (3.31)),

∫ b

a

eztdt =
1

z
(ezb − eza). (3.33)

For z real, the differentiation and integration formulas (3.31), (3.33) are
known from real variable calculus. The non-trivial new content is that they
remain true for complex z.

There is another integral of extreme importance for physics: For real,
positive a, ∫ ∞

−∞
e−at2dt =

√
π

a
. (3.34)

If a is complex with positive real part, (3.34) remains true provided we use
the correct

√
a in the right-hand side: We can represent a with positive real

part by
a = reiθ,

where −π
2 < θ < π

2 , and the
√

a that goes into (3.34) is

√
a =

√
re

i θ
2 .

Notice that arg
√

a lives in the sector −π
4 < arg

√
a < π

4 . The proof of (3.34)

is much deeper than the simple calculation of
∫ b

a eztdt in (3.33). It is based on
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complex contour integration. We give a highly simplified introduction which
is sufficient to deal with (3.34).

Complex contour integration

Let f(z) be a complex function represented by a convergent power series

f(z) =
∞∑

0

anz
n (3.35)

in some disk D centered about the origin. Next, let C : z = z(t), a ≤ t ≤ b be
a parametric curve contained inside D. As t increases from a to b, z(t) in the
complex plane traces out the curve C, which “closes” because z(b) = z(a).
The contour integral of f(z) over curve C is defined by

Figure 3.12
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∫

C

f(z)dz :=

∫ b

a

f(z(t))ż(t)dt. (3.36)

We substitute for f(z) its power series (3.35) and formally interchange sum-
mation and integration:

∫

C

f(z)dz =
∞∑

0

an

∫ b

a

zn(t)ż(t)dt. (3.37)

In an exercise, you’ll carry out elementary calculations which show that
(

1

n + 1
zn+1(t)

)·

= zn(t)ż(t)

for any non-negative integer n. Hence,
∫

C

f(z)dz =
∞∑

0

an

1 + n
(zn+1(b)− zn+1(a))

which vanishes because z(a) = z(b). Hence we have
∫

C

f(z)dz = 0 (3.38)

for any closed curve inside the disk D where the power series for f(z) con-
verges. This is a special case of the famous Cauchy’s theorem. We’ve barely
scratched the surface, but we’ve scratched it enough to demonstrate (3.34)
for Re a > 0.

The power series for f(z) = e−z2
converges for all z, and in this case

C can be any closed curve in the complex plane. In particular, take C to
be the “pie slice” in Figure 3.13. (Remember that

√
a lies in the sector

−π
4 < arg

√
a < π

4 .) You can break the curve into three pieces: The line
from 0 to R along the real axis, the circular arc, and the line segment from
Rei arg

√
a to 0. You can reparametrize each piece and compute

∫

C

e−z2
dz (3.39)

as the sum of three integrals. For instance, the line segment from 0 to R is
represented by z = t, 0 < t < R and its contribution to (3.39) is

∫ R

0

e−t2dt. (3.40)
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Figure 3.13

The line segment from Rei arg
√

a to 0 can be represented by z =
√

at, 0 < t <
R√
|a|

and its contribution to (3.39) is

∫ 0

R√
|a|

e−at2(
√

adt) = −
√

a

∫ R√
|a|

0

e−at2dt. (3.41)

The contribution from the circular arc vanishes as R → ∞ because of the
strong decay of |e−z2| or |z| →∞ with | arg z| < π

4 . By Cauchy’s theorem,
(3.39) is zero, hence (3.40), (3.41) sum to zero in the limit R → ∞, and we
have √

π

2
=

∫ ∞

0

e−t2dt =
√

a

∫ ∞

0

e−at2dt,

so ∫ ∞

0

e−at2dt =
1

2

√
π

a
.

By evenness of the integrand, (3.34) follows. The limit Re a → 0+ is inter-
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esting: Formally set a = i in (3.39). We have
√

a = e
iπ

4 and so

∫ ∞

−∞
e−it2dt =

√
πe
−iπ

4

and the real and imaginary parts give Fresnel integrals,

∫ ∞

−∞
cos t2dt =

∫ ∞

−∞
sin2 tdt =

√
π

2
.


