
Chapter 2

Differential calculus in many
dimensions

Descriptions of physical systems can have many state variables. The state
variables don’t always assume arbitrary independent values. For instance,
suppose there are three state variables x, y and z and physically admissible
triples live on some surface, as depicted in Figure 2.1a. A surface is a graph
if one state variable, say z, is a function of the other two, x and y. In this
case, x and y are in the role of independent variables, and z in the role of
dependent. Typically, a surface is composed of “graphs glued together”, and
at most points on a surface, one can choose two of x, y or z as independent
variables, and the remaining one dependent.

For the shaded patch of surface in Figure 2.1a, we represent z = z(x, y)
as a function of x and y. In the “magnified” picture (Figure 1.2b) the curve
ab is the intersection of the surface with a plane y = constant. On this
curve, z is a function of x, and its derivative with respect to x, denoted zx
(or more traditionally ∂z

∂x
) is called the partial derivative of z with respect

to x. Project the curve ab onto the x, z plane. You get the graph of a
function of one variable (x) and zx represents the slopes of its tangent lines.
Similar meaning of zy: In Figure 2.1b, cd is intersection of surface with
a plane x = constant. Project cd onto the yz plane, and zy represents
the slopes of tangent lines in the y, z plane. Higher derivatives have clear
meanings. zxx means “differentiate with respect to x, and then differentiate
zx with respect to x”. zxy means “differentiate with respect to y, and then
differentiate with respect to x”. This seems backward. Its inherited from the
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Figure 2.1

“traditional” notation ∂2z
∂x∂y

:= ∂
∂x

(
∂z
∂y

)
. Most of the time, the order of x and

y differentiations in “mixed” partial derivatives does not matter: If zxy and
zyx are both continuous, then they are equal: zxy = zyx.

You’ve seen most of this before in calculus. What we’ll concentrate on
here is the interchangeability of roles between independent and dependent
variables. Certain sciences, mechanics and thermodynamics in particular,
are notorious for “always changing their minds about the roles of variables,
independent or dependent”. This gives rise to notations that you don’t see in
math books: For instance, suppose you decide that x is the dependent vari-
able, and y, z independent, and you want to differentiate with respect to y.

A notation you commonly see in thermodynamics is
(
∂x
∂y

)
z
. The parentheses

and subscript z are a reminder that “the y differentiation happens with z
fixed”. Of course, you might argue that the ( )z is redundant, and it is, so
long as x, y, and z are the only variables. But suppose there are four, x, y,
z, and s, only two of which are independent. If we write zx, which of (zx)y
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or (zx)s do we mean?
Here are some elementary exercises: The surface is the “saddle”

z = x2 − y2 (2.1)

depicted in Figure 2.2. Suppose we decide that x is the dependent variable.

Figure 2.2

If you look at lines parallel to the x axis, you’ll see that lines with z < −y2

don’t intersect the surface at all, and lines with z > −y2 intersect it twice.
This is reflected in the math: “Solving” (2.1) for x gives

x = ±
√
z + y2 (2.2)

but only for z > y2. Given (2.2), we now calculate

xy = ± y√
z + y2

. (2.3)

To visualize why there are these two values of xy, recall that the y-differentiation
happens with z fixed, so we should look at z-level curves of (2.1), which are
the hyperbolas in Figure 2.3. For given y > 0, the positive value of xy is
the slope of the tangent line at a, and the negative value, the slope of the
tangent line at a′.

It is common to transform a given set of independent variables into others.
For instance, suppose we start with x and y as independent variables, but
we replace y by s := x + y or t := x − y. If the independent variables are
x, s, we have z = (x+ y)(x− y) = s(2x− s), and(

∂z

∂x

)
s

= 2s.
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Figure 2.3

If we use x, t, we have z = (2x− t)t and(
∂z

∂x

)
t

= 2t.

Notice that the ( )s, ( )t notations come into their own.
This last example is a preamble to the famous question from gas thermo-

dynamics: What is the pressure as a function of volume if the temperature is
a uniform constant? How does the pressure-volume relation change if there is
no heat transfer? The basic state variables of a gas are v := volume/molecule,
p := pressure, e := energy/molecule, τ := temperature, and σ := entropy.
Hence, we have a five-dimensional state space with coordinates v, p, e, τ, σ.
Physically realizable equilibria distinguish a two-dimensional surface in this
five-dimensional space. That is, two independent variables and the remaining
three, dependent. For instance, a simple mechanical model of an ideal gas
(non-interacting point particles) called kinetic theory leads to

pv = τ, e =
3

2
τ. (2.4)

In addition, the entropy σ may be represented as a function of v and τ .
The notion of entropy is notoriously subtle. For the moment it is sufficient
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to recall that change in entropy indicates heat transfer to or from the gas,
and “heat transfer” means “exchange of energy with surroundings which is
not mechanical work”. In an exercise, you’ll investigate the dependence of
entropy upon v and τ for an ideal gas. In summary, we have a description
of an ideal gas at equilibrium, with three relations between the five state
variables. Hence, two independent and three dependent variables.

We return to the original question, about the pressure-volume relation
at constant temperature, or subject to no heat transfer. It boils down to
comparing

(
∂p
∂v

)
τ

and
(
∂p
∂v

)
σ
.

For isothermal (τ = constant) expansion done in a reversible manner
(slowly, so you are always near equilibrium) we have from (2.4),

p =
τ

v
,

and then (
∂p

∂v

)
τ

= − τ

v2
= −p

v
. (2.5)

Here is the “energy budget” for this expansion: As v increases from v1 to v2,
the gas does work (per molecule)

W =

∫ v2

v1

pdv = τ

∫ v2

v1

dv

v
= τ log

v2

v1

and the required energy is absorbed from the surroundings (called a “heat
bath”, and “heat” τ log v2

v1
is absorbed from the bath).

Now suppose the expansion happens, but with no heat transfer from the
surroundings. The gas now has constant entropy σ and we’re investigating(
∂p
∂v

)
σ
. Although we haven’t presented a formula for σ, we can still figure out(

∂p
∂v

)
σ

from a modified energy budget: This time the work done by the gas is
payed for by a drop in its energy e per molecule, so

de

dt
= −(rate of work) = −pdv

dt
. (2.6)

Here, t is time and the time dependences are assumed to be sufficiently slow
that this process is also “reversible”. Substituting e = 3

2
τ and p = τ

v
from

(2.4) into (2.6), we have
3

2

dτ

dt
= −τ

v

dv

dt
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or
1

τ

dτ

dt
+

2

3

1

v

dv

dt
= 0.

It follows that
τv

2
3 = c(σ)

where c(σ) is a time independent constant that presumably depends on the

similarly constant value of σ. Hence, τ = c(σ)

v
2
3

and

p = p(v, σ) =

(
c(σ)

v
2
3

)
1

v
=
c(σ)

v
5
3

. (2.7)

Finally, we compute (
∂p

∂v

)
σ

= −5

3

c(σ)

v
8
3

, (2.8)

or eliminating c(σ) by means of (2.7),(
∂p

∂v

)
σ

= −5

3

p

v
. (2.9)

Comparing (2.5), (2.9), we see that(
∂p

∂v

)
σ

=
5

3

(
∂p

∂v

)
τ

. (2.10)

Figure 2.4 is a pictorial summary of (2.10).

Multidimensional power series

Let z(x, y) be analytic in the sense that z(x, y) has all partial derivatives in
some region about a given point (x, y) = (a, b). We want to construct “Taylor
polynomials in two dimensions” which give good asymptotic approximations
to z(x, y) as (x, y) → (a, b). First, in the one-variable Taylor series (1.48),
set x = a+ h to obtain

f(a+ h) =
∞∑
m=0

f (m)(a)

m!
hm. (2.11)

Next, look at z(a + h, y) with y fixed. Following (2.11), we can make the
Taylor series in powers of h,

z(a+ h, y) =
∞∑
m=0

1

m!
((∂x)

mz)(a, y)hm. (2.12)
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Figure 2.4

Here, the notation ((∂x)
mz)(a, y) means: “m x-partial derivatives of z eval-

uated at (a, y)”. Similarly,

z(a, b+ k) =
∞∑
n=0

1

n!
((∂y)

nz)(a, b)kn.

We can do exactly the same to ((∂x)
mz)(a, b+ k), so

((∂x)
mz)(a, b+ k) =

∞∑
n=0

1

n!
((∂x)

m(∂y)
nz)(a, b)kn. (2.13)

Combining (2.12), (2.13), we present “the whole catastrophe”

z(a+ h, b+ k) =
∞∑
m=0

∞∑
n=0

1

m!

1

n!
((∂x)

m(∂y)
nz)(a, b)hmkn. (2.14)

There is a rearrangement of the summations that helps this terrible formula:
For given N ≥ 0, sum over m,n so m + n = N . Then sum over N . This
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leads to

∞∑
N=0

N∑
m=0

1

N !

N !

m!(N −m)!
((∂x)

m(∂y)
N−mz)(a, b)hmkN−m. (2.15)

This stinks of the binomial formula,

(h+ k)N =
N∑
m=0

(
N

m

)
hmkN−m.

Fine, but how do we slip in the derivatives ((∂x)
m(∂y)

N−mz)(a, b)? By means
of the directional derivative operator

(h∂x + k∂y)z(x, z) := hzx(x, y) + kzy(x, y). (2.16)

Formally, we have

((h∂x + k∂y)
Nz)(a, b) =

N∑
m=0

(
N

m

)
((∂x)

m(∂y)
N−mz)(a, b)hmkN−m

and then (2.14) reduces to

z(a+ h, b+ k) =
∞∑
N=0

1

N !
((h∂x + k∂y)

Nz)(a, b). (2.17)

This still looks terrible. But at least its a “terrible that is easy to remember”.
In addition, good news: Most of the time, all we want are the N = 0, 1, 2
terms. Again, the reason is that “low order Taylor polynomials make good
approximations as (h, k)→ (0, 0)”.

Differentials and tangent planes

Very often we need to approximate changes in dependent variables due
to small changes in the independent. Let

∆z := z(a+ dx, b+ dy)− z(a, b) (2.18)

be the change in z(x, y) when (x, y) changes from (a, b) to (a + dx, b + dy).
Here, the changes dx and dy of x and y are called differentials of x and y. (No,
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they are not “infinitesimals”, so we don’t have to answer to Bishop Berkeley’s
critique of Newton, that he traffics in the “ghosts of vanished quantities”.)
The approximation to ∆z based on the N = 0, 1 terms of the two-variable
Taylor series (2.17) with h = dx and k = dy is

dz = zx(a, b)dx+ zy(a, b)dy, (2.19)

called the differential of z. The difference ∆z − dz is the sum of terms in
(2.17) with N ≥ 2. The N = 2 term has components proportional to (dx)2,
dxdy and (dy)2. Let dr :=

√
(dx)2 + (dy)2 be the length of the displacement

(dx, dy). We have (dx)2, |dxdy| and (dy)2 all less than (dr)2, and the N = 2
term in (2.17) has absolute value bounded above by a constant times (dr)2.
Similarly, the N > 2 term is bounded by a constant times (dr)N . As dr → 0,
(dr)N for N > 2 becomes negligible relative to (dr)2. It can be shown that

∆z − dz = O((dr)2),

so
∆z = zx(a, b)dx+ zy(a, b)dy +O((dr)2). (2.20)

Figure 2.5 is a geometric visualization of ∆z and how it differs from dz.
Notice that (a + dx, b + dy, z + dz) lies on the tangent plane of the graph
of z(x, y) at (x, y) = (a, b). In this sense, dz is called the tangent plane
approximation to ∆z.

Figure 2.5

We examine two applications of (2.20). (1) The draw weight f of an
archery bow is proportional to ωτ 3, where ω and τ are the width and thickness
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Figure 2.6

of its limbs, say at the middle. Suppose we decrease the thickness τ by 2%.
By what percentage do we need to increase the width, to keep the same draw
weight. By what percentage does the mass of limit per unit length change?
From

f = constant× ωτ 3 (2.21)

we have
df = fωdω + fτdτ = constant× (τ 3dω + 3ωτ 2dτ) (2.22)

and dividing (2.22) by (2.21),

df

f
=
dω

ω
+ 3

dτ

τ
. (2.23)

If df = 0, and dτ
τ

= −.02 as given, we get dω
ω

= +.06 or 6%. The mass per
unit length ρ is proportional to the cross sectional area ωτ , so

dρ

ρ
=
dω

ω
+
dτ

τ
= .06− .02 = .04,

and the mass per unit length increases by 4%.
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(2) The electric potential in the x, y plane due to uniform charge σ per
unit length along the z axis is

u(x, y) = −σ log
√
x2 + y2. (2.24)

We have a dipole in the x, y plane, consisting of a charge −Q at (x, y) 6= (0, 0)
and a charge +Q at (x + dx, y + dy). The electric potential energy of the

Figure 2.7

dipole is

U := Qσu(x+ dx, y + dy)−Qσu(x, y) = du+O((dr)2), (2.25)

where

du := ux(x, y)dx+ uy(x, y)dy = −Qσ
(
xdx+ ydy

x2 + y2

)
. (2.26)

Some vector notation is informative: Let x := (x, y) denote displacement
from the origin, and dx := (dx, dy) the displacement from the negative to
the positive charge. Then (2.26) can be written as

du = −Qσx · dx
r2

where r :=
√
x2 + y2 is distance of the negative charge from the origin.

Introducing the radial unit vector r̂ = x
r
, and the dipole moment p := Qdx,

we have

du = −σ r̂ · p
r

,
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and finally

U = −Qσ r̂ · p
r

+O((dr)2). (2.27)

We can guess what happens to the dipole in Figure 2.7: The dark arrows
are the forces on the charges due to the line charge along the z axis. These
forces will cause p to rotate until it points in the +r̂ direction, and then the
dipole as a whole gets pulled to the origin.

Multivariable chain rule

Given analytic z(x, y) and a parametric curve (x(t), y(t)) in the x, y plane,
define Z(t) as the restriction of z(x, y) to the curve. That is

Z(t) := z(x(t), y(t)). (2.28)

If z = z(x) independent of y, (2.28) reduces to

Z(t) = z(x(t)),

and by the chain rule for one variable functions, we have

dZ

dt
(t) =

dz

dx
(x(t))

dx

dt
(t).

What is the generalized formula for dZ
dt

when z(x, y) depends on both x and
y?

Let us compute the change ∆Z in Z due to a change dt in t, two ways:
First, assuming that Z(t) is given, we have

∆Z =
dZ

dt
(t)dt+O((dt)2). (2.29)

Alternatively,

∆Z = z(x(t+ dt), y(t+ dt))− z(x(t), y(t))

= z(x+ ∆x, y + ∆y)− z(x, y).

In the last line x, y denote values at t, and ∆x := x(t + dt) − x(t), and
similarly for ∆y. By the differential approximation formula (2.20) (with ∆x
and ∆y in roles of dx, dy) we have

∆Z = zx(x, y)∆x+ zy(x, y)∆y +O((∆r)2), (2.30)
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where ∆r :=
√

(∆x)2 + (∆y)2. Next we evoke

∆x =
dx

dt
dt+O((dt)2), (2.31)

and similarly for ∆y. Substituting these ∆x and ∆y into (2.30), we obtain

∆Z =

{
zx(x, y)

dx

dt
+ zy(x, y)

dy

dt

}
dt+O((dt)2). (2.32)

Notice that the O((dt)2) in (2.32) comes from the O((dt)2) in (2.31) and
O((∆r)2) in (2.30). Comparing (2.29), (2.32), we see that

dZ

dt
= zx(x, y)

dx

dt
+ zy(x, y)

dy

dt
.

The generalization to z depending on more independent variables is clear: If

Z(t) := z(x1(t), x2(t), . . . xn(t)) (2.33)

we have
dZ

dt
= zx1

dx1

dt
+ . . . zxn

dxn
dt

.

Because of the subscripts on the x’s, maybe

dZ

dt
=

∂z

∂x1

dx1

dt
+ . . .

∂z

∂xn

dxn
dt

(2.34)

looks better. Finally, if the x’s themselves are functions of several variables
t1, t2, . . . tm, then for each j = 1, . . .m we have

∂Z

∂tj
=

∂z

∂x1

∂x1

∂tj
+ . . .

∂z

∂xn

∂xn
∂tj

. (2.35)

Convective derivative

In continuum mechanics, the evolution of a material body is quantified
by a flow map. The flow map is a transformation of spatial positions at
time t = 0 to positions at times t 6= 0. If the flow map sends an initial
region R(0) at time t = 0 to the region R(t) at time t, then R(0) and R(t)
“consist of exactly the same material stuff”. A time sequence R(t) of regions
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always containing the same stuff is called a material region. Flow maps are
a mathematical way of describing a flowing stream or the shaking of a fat
man’s belly. In the limit of material regions shrinking to moving points, we
get “particle trajectories” x = x(t). At any time t, the set of velocities ẋ(t)
defines a vector field u(x, t) in space, called the velocity field of the medium.
Each particle trajectory x(t) satisfies the ODE

ẋ = u(x, t). (2.36)

For instance, in two-dimensional space, u has x and y components which we
denote u(x, y, t) and v(x, y, t), and the ODE (2.36) takes component form,

dx

dt
= u(x, y, t),

dy

dt
= v(x, y, t). (2.37)

Figure 2.8 is a pictorial summary of flow maps and velocity fields.

Figure 2.8

The most essential mathematical idea in continuum mechanics is quan-
tifying the time rate of change of a state variable c(x, t) along particle tra-
jectories. Here, the multidimensional chain rule is indispensable: Along a
particle trajectory x = x(t), he value of c as a function of time is

C(t) := c(x(t), t). (2.38)
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Lets consider two space dimensions and write in place of (2.38),

C(t) = c(x(t), y(t), t). (2.39)

Applying the multidimensional chain rule (2.34) with x1(t) = x(t), x2(t) =
y(t), x3(t) = t, we have

dC

dt
= cx

dx

dt
+ cy

dy

dt
+ ct

dt

dt
. (2.40)

Since the x and y velocities dx
dt

and dy
dt

satisfy (2.37), we have

dC

dt
= (ct + ucx + vcy)(x(t), y(t), t). (2.41)

The quantity ct+ucx+vcy is called the convective derivative of c(x, y, t). We
use our understanding of the convective derivative to explain how

Shear increases gradients

Let c(x, y, t) be the concentration of dye in flowing water. Water is essen-
tially incompressible, so any little blob of water maintains the same volume,
and the concentration of dye inside it remains constant in time as well. Hence,
C(t) in (2.39) is time independent, and by (2.40), the convective derivative
of c vanishes, so we have the PDE

ct + ucx + vcy = 0. (2.42)

If u and v are given, this PDE governs the time evolution of c(x, y, t). Let’s
consider the special case of a shear flow with u = −ωy, v ≡ 0, where ω is a
constant with units of 1÷ time. The PDE (2.42) reduces to

ct − ωycx = 0. (2.43)

Figure 2.9 depicts the shear flow and its effect on a blob of dye. Particle
trajectories have y ≡ constant, independent of time, and x = −ωyt, modulo
an additive constant. Intuitively, we understand that an initially circularly
symmetric dye blob elongates in a “streak” of ever increasing length that
gradually aligns itself parallel to the x axis.

Lets see what happens to the gradient ∇∇∇c = (cx, cy) seen along a particle
path. That is, we examine the time evolutions of F (t) := cx(−ωyt, y, t) and
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Figure 2.9

G(t) := cy(−ωyt, y, t), where y is any constant. The time derivatives of F (t)
and G(t) are convective derivatives of cx and cy,

dF

dt
= (cx)t − ωy(cx)x, (2.44)

dG

dt
= (cy)t − ωy(cy)x. (2.45)

In (2.44), (2.45), the derivatives of c are evaluated at x = −ωyt, y = constant.
By x-differentiation of the PDE (2.43) we see that the convective derivative
of cx vanishes and then (2.44) implies F ≡ constant, independent of t. By
y-differentiation of (2.43), we find

(cy)t − ωy(cy)x − ωcx = 0

and then (2.45) reduces to

dG

dt
= ωcx(−ωyt, y) = ωF.

Since F ≡ constant, we have

G(t) = ωFt,
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modulo an additive constant. In summary, the x gradient cx is constant
in time along a particle path, and the y gradient cy grows linearly in time.
Evidently, the blob in Figure 2.9 is becoming narrow in the y direction. That
makes sense: As it is elongated in the x-direction, it must compress in the y
direction to preserve its area.


