Claim: \(\text{Pic}(\mathbb{P}^n) \cong \mathbb{Z} \)

Proof: Write \(\mathbb{P}^n \) as a union of open affine subsets \(U_i = \{ x_i \neq 0 \} \), \(0 \leq i \leq n \). Here, the \(x_i \) refer to the standard coordinates on \(\mathbb{P}^n \). For an open subset \(U \) of \(\mathbb{P}^n \), the functions on \(U \) are ratios of homogeneous polynomials \(f/g \), where \(g \) does not vanish on \(U \) and \(\text{deg}(f) = \text{deg}(g) \). In particular, the ring of functions on \(U_i \) equals \(\mathbb{C}[\frac{x_i}{x_j}] \), \(j \neq i \).

Now, let \(E \) be a line bundle of \(\mathbb{P}^n \). \(E \) is trivializable on each of the \(U_i \), so let \(\alpha_i \in \Gamma(U_i, E) \) be a generator. For any open subset \(V \) of \(U_i \), the restriction of \(\alpha_i \) to \(V \) is a generator for \(\Gamma(V, E) \), and it should not cause confusion to call this element \(\alpha_i \) as well.

So, on \(U_0 \cap U_1 \), \(\alpha_0 \) and \(\alpha_1 \) are two generators of \(\Gamma(U_0 \cap U_1, E) \), and so we must have \(\alpha_1 = k \alpha_0 \), where \(k \) is an invertible element of \(\mathcal{O}(U_0 \cap U_1) = \mathbb{C}[\frac{x_0}{x_1}, \frac{x_1}{x_0}, \frac{x_2}{x_0}, \ldots, \frac{x_n}{x_0}] \). It is clear that the only invertible elements are of the form \(z(\frac{x_0}{x_1})^{d_1} \), where \(z \in \mathbb{C}^* \) and \(d_1 \in \mathbb{Z} \). Replacing \(\alpha_1 \) with \(\alpha_1/z \), we have \(\alpha_1 = (\frac{x_1}{x_0})^{d_1} \alpha_0 \).

Repeating this analysis, we must have \(\alpha_i = (\frac{x_i}{x_j})^{d_i} \alpha_0 \), for \(i = 1, 2, \ldots, n \), and integers \(d_i \in \mathbb{Z} \). It is clear that \(E \) is determined by the \(d_i \). Conversely, the \(d_i \) are determined by \(E \), because the only invertible elements ("gauge transformations") on each of the \(\mathcal{O}(U_i) \) are scalars. Our next step is to show that all \(d_i \) must be equal. Indeed, pick \(i \neq j \neq 0 \). By the same analysis as before we must have \(\alpha_i = z(\frac{x_i}{x_j})^m \alpha_j \) for some \(z \in \mathbb{C}^* \) and \(m \in \mathbb{Z} \). But then:

\[
\alpha_i = z \left(\frac{x_i}{x_j} \right)^m \alpha_j = z \left(\frac{x_i}{x_j} \right)^m \left(\frac{x_j}{x_0} \right)^{d_j} \alpha_0 = z \left(\frac{x_i}{x_j} \right)^m \left(\frac{x_j}{x_0} \right)^{d_j} \left(\frac{x_0}{x_i} \right)^{d_i} \alpha_i
\]

And so we must have \(z = 1 \) and \(m = d_j = d_i \). In fact, this shows that \(\alpha_i = (\frac{x_i}{x_j})^{d_i} \alpha_j \) for all \(i, j \), and for some fixed integer \(n \). Then, letting \(E \) correspond to \(d \), we have a bijection between \(\text{Pic}(\mathbb{P}^n) \) and \(\mathbb{Z} \). To see that this is a homomorphism: Observe that if \(E \) and \(E' \) are two line bundles that have generators \(\alpha_i \) of \(\Gamma(U_i, E) \) and associated integer \(d \) (resp. \(\alpha'_i \) of \(\Gamma(U_i, E') \), \(d' \)), then \(E \otimes E' \) have generators \(\alpha_i \otimes \alpha'_i \) on \(\Gamma(U_i, E \otimes E') \). Then on, say, \(U_0 \cap U_1 \) we have \(\alpha_1 \otimes \alpha'_1 = ((\frac{x_1}{x_0})^{d_1} \alpha_0) \otimes ((\frac{x_1}{x_0})^{d'_1} \alpha'_0) = (\frac{x_1}{x_0})^{d+d'} (\alpha_0 \otimes \alpha'_0) \).

\[\square \]

Remark: There are exactly two ways of constructing an isomorphism of \(\text{Pic}(\mathbb{P}^n) \) with \(\mathbb{Z} \). The standard choice is to assign the integer \(d \) to the line bundle, denoted by \(\mathcal{O}_{\mathbb{P}^n}(d) \), where for \(U \subset \mathbb{P}^n \) open: \(\mathcal{O}_{\mathbb{P}^n}(d)(U) = \{ f/g \mid f, g \text{ homo.}, g \neq 0 \text{ on } U, \text{deg}(f) - \text{deg}(g) = d \} \). For \(E = \mathcal{O}_{\mathbb{P}^n}(1) \), a generator for \(\Gamma(U_0, E) \) is \(\alpha_0 = x_0 \), while a generator for \(\Gamma(U_1, E) \) is \(\alpha_1 = x_1 \). So \(\alpha_1 = (\frac{x_1}{x_0}) \alpha_0 \), and so the description in the proof above would also assign the number \(1 \) to \(E \).