
Invent. math. 87, 403-423 (1987) [nffel l t iol le$ 
mathematicae 
�9 Springer-Verlag 1987 

Cyclic homology and equivariant homology 

John D.S. Jones 

Mathematics Institute, University of Warwick, Coventry CV4 7AL, UK 

Introduction 

The purpose of this paper is to explore the relationship between the cyclic 
homology and cohomology theories of Connes [9-11], see also Loday and 
Quillen [20], and "IF equivariant homology and cohomology theories. Here II" is 
the circle group. The most general results involve the definitions of the cyclic 
homology of cyclic chain complexes and the notions of cyclic and cocyclic 
spaces so precise statements will be postponed until w 3. In this introduction we 
explain some of the formal similarities between the cyclic theory and the 
equivariant theory and give two examples where the general results apply. 

Let A be an associative algebra over a commutative ring K. Then one can 
form the cyclic homology HC.(A) and cohomology HC*(A) of A. These 
groups have periodicity operators 

HC,(A)-.~HC,,_z(A), HC"(A)-.HC"+Z(A). 

Connes [10] has defined products in cyclic cohomology and using this 
product structure HC*(K) becomes a polynomial ring K[u] where u has 
degree 2. The groups HC*(A) now become modules over this polynomial ring 
and the action of u corresponds to the periodicity operator. Thus it seems 
reasonable to regard K[u] as the natural coefficients for cyclic cohomology 
and then to make HC.(A) into a module over K[u] by using the periodicity 
operator. However it is clear that every element of HC.(A) is u-torsion so 
HC*(A) and HC.(A) cannot be dual over K[u]. 

In w 2 we introduce a variant of cyclic homology H C ,  (A) which should be 
thought of as dual, over K[u], to HC*(A). In particular HC,(A) is a module 
over K [u] where the action of u corresponds to a periodicity operator 

14 c ;  (A) ~ H C._ 2(A). 

The algebraic properties of HC,(A) will be studied in [17] where the 
statement that HC,(A) is dual, over K[u], to HC*(A) is justified. It is shown 
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in [17] that one can define products in HC,(A)  so that HC,(K)  and K[u] 
become isomorphic rings, where here u has degree - 2 ,  and the module 
structure of H C ,  (A) over H C ,  (K) is the same as the module structure defined 
by the periodicity operator. One feature of H C ,  (A) is that it can be non-zero 
in all degrees, positive or negative. 

Next one can invert the action of u on H C ,  (A) and form the groups 

H C.(A) = u-  1H C ,  (A). 

These groups become modules over K[u,u-1]. These various forms of 
cyclic homology are related by a long exact sequence 

. . . .  H C~ (A) ---~ H C,(A) ~ H C,_ 2(A) ~ H C~_ , (A ) . . . . .  

There is a clear and precise analogy with the Tate homology of groups. 
There is a similar formal structure in ~ equivariant homology and coho- 

mology theories, [1, 24], which we now outline. Let Z be a space with a circle 
action, then the 11" equivariant cohomology of Z is defined to be 

H~(Z) = H*(EIF • ~Z) 

where Elf is a contractible space on which "IF acts freely and the coefficients 
are taken in the ring K. These equivariant cohomology groups are modules 
over H~(point)=H*(B]F) which will be identified with K[u]. One can now 
form the localised equivariant cohomology theory/4~(Z) = u-IH*(Z). There is 
a third equivariant cohomology theory, which will be denoted G~(Z), related 
to H*(Z) and/4}(Z) by a long exact sequence 

n ^n  n + 2  n + l  . . . .  H~(Z )~ H~ (Z )~ G~  (Z )~ H~  (Z) . . . . .  

There are analogous equivariant homology theories related by the exact 
sequence 

. . . .  G~(Z) ~ "~ ~ -~ ~ (Z) . . . . .  H, (Z)---~Hn_z(Z) G,_a 

~ Z  ~rz Here one should think of G.( ) as dual to H~(Z) and H . (  ) as dual to 
G~.(Z) over K[u].  We will refer to the three above long exact sequences as the 
fundamental long exact sequences of the appropriate theories. 

We now give two results, special cases of theorems in w 3, which illustrate 
the relation between the cyclic theories and the equivariant theories. For both 
these results we need to extend the definitions of cyclic homology so that 
HC,(A),  HC.(A) and HC.(A) are all defined for differential graded algebras 
A. This is straightforward, see w 3. 

Let X be a topological space and let L(X)=Map0r ,  X) be the space of free 
loops in X. Then the circle acts on L(X) by rotating loops. Let S*(X) be the 
singular cochain complex of X made into an associative differential graded 
algebra using the Alexander-Whitney product [16, Chap. 29, p. 193]. Grade 
S*(X) negatively so that the differential decreases degree by one; this means 
that HC.(S*X) will, in general, be non-zero in all degrees. 
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Theorem A. If  X is simply connected, there are natural isomorphisms 

HC2.(S*X)~H~r(LX ) as K[u] modules 

HC .(S*X)'~H~r(LX ) as K[u,u -a] modules 

HC .(S*X)~G~r(LX) as K[u] modules. 

These isomorphisms throw the fundamental exact sequence of cyclic homology 
onto the one for equivariant cohomology. 

In this result it is probably more natural, particularly as we have graded 
cochains negatively, to grade cohomology negatively and to change the grading 
of/4~ and G* so that the result becomes HC~(S*X)_~H"T(LX ) and so on. For 
the moment however we will stick to the usual grading conventions for 
cohomology. 

Corollary. Let X be simply connected compact manifold. Take the coefficients K 
to be R or ~ and let g2*X be the (differential graded) algebra of (real or 
complex as appropriate) differential forms on X. Then there are natural isomor- 
phisms 

HCT_,(f2*X)~H~r(LX) as K[u] modules 

HC_,(f2*X)~IZl~r(LX) as K[u,u -1] modules 

HC_,(f2*X)~G~r(LX ) as K[u] modules. 

These isomorphisms throw the fundamental exact sequence of cyclic homology 
onto the one for equivariant cohomology. 

The original motivation for this work was to compute the cyclic homology 
of O* X. 

Now let G be a topological group and let BG be its classifying space. Let 
S,(G) be the singular chain complex of G made into an associative differential 
graded algebra using the Eilenberg-McLane shuffle product [16, Chap. 29, 
29.271 S , ( G ) |  and the map induced by the product law 
G x G ~ G .  

Theorem B. Let G be a topological group, then there are natural isomorphisms 

HC~(S,G)~-G~(LBG) as K[u] modules 

HC.(S,G)~-I~I~(LBG) as K[u,u -x] modules 

HC.(S ,  G)~-H~(LBG) as K[u] modules. 

These isomorphisms throw the fundamental exact sequence of cyclic homology 
onto the one for equivariant homology. 

These two results are important motivation for the rest of this paper, they 
were discovered independently but they are clearly related. Theorem B is a 
version of a theorem due to Goodwillie [14]; it is also proved by Burghelea 
and Fiedorowicz [71. The approach used here is rather different from that of 
[14] and [71. One of the aims has been to give a unified treatment of these 
two results, indeed from the point of view adopted in this paper these two 
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theorems, or more accurately the general results 3.1 and 3.2, appear as two 
sides of the same coin. The main new ingredient we introduce is the study of 
cocyclic spaces, which leads to Theorem A. Two other features of the approach 
used here are the systematic use of the three theories HC,(A), HC,(A) and 
HC,(A),  and the deduction of the main results from the geometrical in- 
terpretation of Connes'  B operator (see w 4). 

There are cyclic cohomology versions of both these theorems. The simplest 
statements are H C"(S* X) ~ G~, (LX) and H C"(S, G) ~ H~r(LBG) but we leave 
the reader to formulate the results precisely and to trace the proofs from the 
arguments we give. 

The rest of this paper is organised as follows; w 1 and w 2 are preliminary 
sections which contain a discussion of Connes category A, cyclic objects and 
the definitions, and some elementary properties, of the various cyclic homology 
groups. Much of the contents of these two sections can be found in the 
literature [8-11, 18-20]; we have included this material in an effort to be self 
contained. In w 3 we state the main results in full detail and begin their proofs. 
The proofs are completed in 94 and 95. In 96 we give the proofs of 
Theorems A and B and in w 7 we discuss an application of Theorem A. 

w 1. Cyclic objects - definitions and examples 

We begin by describing Connes'  category A, [11]. Start with the category A 
whose objects are the finite ordered sets n = {0, 1 . . . . .  n}, and whose morphisms 
A(n, m) are the order preserving maps s: n ~ m .  Here order preserving means 
that if i < j  then s(i)<sO). Connes extends A by introducing cyclic permutations 
of n. In detail the objects of A are the sets n and the morphisms are A(n,m) 
= A(n, m)•  K(n) where K(n) is the group of cyclic permutations of n. To define 
the composition law start with t~A(n,m) and uEK(m) and construct new 
elements t*u~K(n) and u,(t)~A(n,m) as follows. Let A i be the set t - l i ~n ;  A i 
is given the ordering it inherits as a subset of n. Now define B i by B,~k~=Ak; 
again B i is ordered. We will always give an ordered disjoint union of ordered 
sets its natural ordering. As sets n is the same as Bow. . .uB  m but not  nec- 
essarily as ordered sets; we get a new ordering of n. Write t*u for the 
permutation 

(i + 1)-th element in the new ordering ~ i. 

It is easy to check that if u is cyclic then so is t*u. Now define u,t  to be 
ut(t* u)-1; it is easy to check that it is order preserving. Define the composition 
law by the formula 

(s, u)(t, v)=(s . (u, t ) ,  (t* u). v). 

The morphisms of A are generated (using composition) by: 

(a) The face maps 6 i ~ A ( n - l , n  ), O~i<n; the unique injective order pre- 
serving map whose image does not contain i. 

(b) The degeneracy maps ~r~A(n+ 1, n), O<i<n; the unique surjective or- 
der preserving map which repeats i. 

(c) The cyclic permutation z,~A(n, n); ~,(i)= i -  1 mod n +  1. 
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These generators satisfy the usual cosimplicial relations together with extra 
"cyclic relations". These relations are easy to work out; for the convenience of 
the reader we list them below: 

1.1 (a) 
(b) 
(c) 

6j6i = 6i6~- 1 i < j  

G jt~i = ai(~ j+ 1 i <=j 
(Tjt~i = t~it~ j-- 1 i <j  

=1 i = j  or i = j + l  

: & i _ l a j  i > j + l  
(d) 27.6i =(~i--127n--1 1 <_i<n 

z.6 o = 6. 

(e) T,~ i =cr~_127,+ 1 l<_i<<.n 

TntT0 = O'n 272+ 1 

(f) T ~ + I = I .  

This category A is self dual, that is there is an equivalence between A and 
its opposite category. This equivalence is given by the identity on objects and 
on morphisms by s--+ s* where 

6*=t~ i 6i: n - 1  --+n O<_i<_n-1 
6*=tyoZ~ l 6,: n - 1  -*n 
a * = & / + l  

27n* = Tn 1 . 

It is easy to check that if s is in A(n, m) then s**= ~, ' sz , .  
Following Connes [-I 1] we define a cyclic object in a category C to be a 

contravariant functor A ~ C  and a cocyclic object in C to be a covariant 
functor A--+C. Cyclic (or cocyclic) objects in C form a category with mor- 
phisms natural transformations of functors. Using the equivalence of A with its 
opposite each cyclic object F gives rise to a cocyclic object F ~ and vice versa. 
Given a cyclic object in C we can always regard it as a simplicial object in C, 
that is a contravariant functor from A --+ C, simply by forgetting the morphisms 
27i; similarily we can regard a cocyclic object as a cosimplicial object. 

Example 1.2. Let Top be the category of topological spaces and continuous 
maps. Let X be a space and let X: A ~ Top be the cyclic space 

X(n) = Map (n, X) = X "+'. 

We get a cocyclic space X ~ This cocyclic space arises in the proof of 
Theorem A so we describe its structure in detail. The maps 6i, try, and v, 
induce the following maps of spaces 

6i(X 0 . . . . .  Xn_ a )=(X0  . . . . .  X i _ l , X i , X i ,  Xi+ 1 . . . . .  Xn_a)  , O<-i<_n-1 

a.(Xo . . . . .  x . _  1) = (Xo, x l  . . . . .  x , _  1, Xo) 

(~i(Xo . . . . .  Xn+ I ) = ( X O  . . . . .  X i, Xi+ 2 . . . . .  Xn_  l)  

~,(Xo . . . . .  x,) = (Xl . . . . .  x . ,  x0). 
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E x a m p l e  1.3. Let G be an associative topological monoid with unit e, then 
make n ~ G  "+1 into a cyclic space as follows: Write d~, s t and t n for the maps 
induced by fii, ai, and r, ,  then 

di(x o . . . . .  x,) = (x o . . . . .  x i_  l, x ix i  + l , xi + 2 . . . . .  x,,) 

SI(Xo . . . . .  Xn) = (Xo . . . . .  X i - 1 '  e, xi + 1, xi  + 2 . . . . .  x.) 

t . ( x  o . . . . .  x . )  = (x . ,  x o, x 1 . . . . .  x n_ ,). 

Write K ,  for the category of chain complexes over K. If C is a chain 
complex over K and x e C  then we write Lxl for the degree of x. If C and D are 
chain complexes then we use the usual sign convention for the differential in 
C | D, d ( a | 1 7 4  + ( -  1) l" la |  

E x a m p l e  1.4. Let A be a DGA,  that is an associative differential graded algebra, 
over K. Then make n ~ A  | into a cocyclic chain complex A: A ~ K .  as 
follows 

• i (a0  @ . . .  |  1)= ao | . . .  |  1 | 1 | 1 7 4  . . .  |  1 

a~(ao | ... |  O = a  o @ ... |  1 |  l |  2 | ... |  n 

z,(a o |  | = ( -  1)r(al |  | a, | ao) 

where r =  [aol(lal[ + . . .  + la,[). 
We now have the cyclic chain complex A ~ and checking formulas shows 

that A ~ is the analogue for DGA's  of the cyclic object used to define cyclic 
homology, compare [8, 11]. We will refer to A ~ as the cyclic chain complex 
generated by A. 

Example  1.5. Let X be a cyclic space and Y a cocyclic space. Then we get 
cyclic chain complexes n ~ S .  X(n) and n ~ S* Y(n). 

w 2. Cyclic homology 

We define the cyclic homology, in all its variations, of a cyclic chain complex 
E. This will be done by the shortest possible route, for a less abbreviated 
account see [8-11;  18-20]. The differential in E will be assumed to decrease 
degree by one. We write d t, s t and t n for the maps induced by 6 i, ai and z,, so 
d t, s~ and t, satisfy the opposites of the relations 1.1. 

First we construct the Hochschild complex of E. Ignoring the maps t,, E is 
a simplicial chain complex; associated to such a structure is a natural double 
complex and the Hochschild complex C(E)  is the associated total complex. 
Explicitly form the double complex 

C p,~ = Cp,~(E) = E(p)q 

bi: Cp, q-'+Cp, q_ l ,  b u = ~ ( - 1 ) t d i  : Cp, q ' -+Cp_l,q 

where b~ is the differential in the chain complex E(p). The associated total 
complex is given by 

C , = C , ( E ) =  | C~,~(E) 
p+q~n 
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with total differential b(x)=bi(x)+(-1)Pbn(x) for x in Cp, q. The Hochschild 
homology of E, HH.(E), is the homology of this total complex. 

Next we construct the B operator (compare [10] and [20]) B: 
Cp, q ~ Cp+ l, q. First define two auxilliary operators 

hp = t p +  1 Sp: E(p) ~ E(p + 1) 

N,= ~ (-1)"t~:E(p)~e(p).  
O<i<p 

Then B is defined by the formula 

B p = ( -  1)q(1 - ( -  1)P+ltp+OhpNp: E(p)q ~ E ( p +  1)q. 

A straightforward argument, compare [10, Lemma 30] and [20, 1.3 and 1.4], 
shows that B 2 =0,  Bb~= -b iB  and Bbn= -bnB. 

If L and M are graded K modules then L |  will denote the tensor 
product defined by 

(L| F[ L,| 
i+j=n 

The use of the direct product rather than the direct sum in forming tensor 
products of graded modules is an important technical point. 

Now introduce the polynomial ring K[u], where lul=-2 and construct 
chain complexes 

C -  (E) = K [u] | C(E} differential ~-  

C ^ (E) = u -  1 C -  (E) differential c3 ̂  

C + (E) = C ̂  (E)/uC- (E) differential t3 +. 

The differentials are defined by the formulas 

d -=b+uB  that is ~-(uk| 

^ is the differential induced on the localisation of C -  

0 + is the differential induced by t3 ̂  on the quotient C § 

If we write out these chain complexes as double complexes with columns 
C(E), horizontal differential B and vertical differential b, as in [20], then C -  
occupies the left hand half plane, C + the right hand half plane and C ^ the 
whole plane. Further, the total complex C -  is formed using the direct product 
and for C § it is formed using the direct sum. For  C ^ the general element is of 
the form ~a,u" where nEZ and a , = 0  for n<=n o. Note that we will have to 
deal with cyclic chain complexes, like the (negatively graded) cochains on a 
cocyclic space, with elements of arbitrarily large negative degrees. So in all 
cases it is important to be precise over how we form the total complex from 
the corresponding double complex. The definitions are chosen so that 2.1 
below is valid. 

The various cyclic homology groups are defined as follows: 

HC,(E)=H,C-(E) .  HC,(E)=H,C^(E). HC,(E)=H,C+(E). 
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By construction H C ,  (E) and H C,(E) are modules over K [u] and H C,(E) 
is a module over K [u, u - l ] .  By definition the periodicity operator is taken to 
be multiplication by u. Note that since forming homology and localisation 
commute H C , (E)=  u - I H C ,  (E). In particular, if A is a D G A  then 

HH.(A)=HH.(A~ HC.(A)=HC.(A~ HC.(A)=HC.(A~ 

H C.  (A) = H C.  (A~ 

The fundamental exact sequence is the exact sequence of homology groups 
induced by the short exact sequence of chain complexes 

0 --* C -  (E) ~ C ^ (E) ~ uC + (E) -~ 0 

after identifying H,(uC + (E)) with HC,_ 2(E). 
The following lemma gives one particularly important property of Hoch- 

schild and cyclic homology. 

Lemma 2.1. Let f: E ~ F be a map of cyclic chain complexes such that in each 
degree n, f (n) :  E ( n ) ~ F ( n )  induces an isomorphism in homology, Then f induces 
isomorphisms 

(i) HH,(E)~HH,(F)  
(ii) HC,(E)~HC,(F)  

(iii) H C ,  (E) ~ n C ,  (F) 

(iv) HC,(E)--*HC,(F). 

Proof The proof of (i), and the deduction of (ii) from (i) follow from routine 
double complex arguments. If re>n, write C(m,n) for the subquotient 
u"C^/umC ^ of C ^. Induct ion starting from (i) shows that the induced map 
H,C(E)(m, n) ~ H,C(F)(m, n) is an isomorphism, Now by construction 

UmC - = Inv lim C(m, n> 

and so the lim 1 exact sequence for computing the homology of an inverse limit 
of chain complexes shows that the induced map H,(umC-(E))-'*H,(u"C-(E)) 
is an isomorphism for all m. In particular this proves (iii). Finally (iv) follows 
since H C,  (E) = u -  1H C ,  (E). 

We end this. section with an indication of the definition of the cyclic 
cohomology of E. Simply replace the Hochschild complex of E by its K dual 
C*(E), with differential b*, and the B operator by its dual B*. Give the 
indeterminate u in the polynomial ring K[u]  degree 2 and form the complexes 
D + (E) = K [u] | C* (E), D ^ (E) = u -  ~ D + (E) and D -  (E) = D ^ (E)/u D + (E) with 
differentials d+=b*+uB*, and c~ ̂ , ~-  the induced differentials. The various 
forms of cyclic cohomology are defined as follows 

HC*(E)=H,D+(E), HC*(E)=H,D"(E), HC*_(E)=H,D-(E). 

Written out  as double complexes (with differentials increasing degree by 
one) as in the case of cyclic homology, D § occupies the right hand half plane 
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D-  the left hand half plane and D ^ the whole plane. Again the precise way in 
which we form the total complexes is important. Finally note that HC*(E) 
=u-I  H C*(E). 

w 3. The main theorems 

Let X be a cyclic space and Y a cocyclic space. By forgetting the structure 
maps induced by z,, X becomes a simplicial space and Y a cosimplicial space. 
We will denote the cosimplicial space n--.A", where A" is the standard n 
simplex by A'. One may form the realisation IXl of a simplicial space, see [25]. 
The construction of the realisation [YI of the cosimplicial space Y (see [6, w 5]) 
is less well known. By definition I Y[ = Hom~(A', Y) where Hom~ means natural 
transformations of functors defined on A, and [YI is given the topology it 
inherits as a subset of YI Map(A", Y(n)). 

We now introduce some grading and notational conventions. We always 
assume that the differential in a chain complex decreases degree by one. To 
accomodate this convention we are forced to grade cochains negatively and 
therefore to grade cohomology, and H*, negatively and change the sign of the 
grading of/4~ and G~. We write S,(X)  for the cyclic chain complex defined by 
the cyclic space X. Similarily, S*(Y) will denote the cyclic chain complex 
determined by the cocyclic space Y. We always assume that a cyclic space, 
when considered as a simplicial space, is "good" in the technical sense of [25, 
Definition A.4]. This condition ensures that the homology of IXL is naturally 
isomorphic to the homology of C,(X), compare [5, Theorem 4.1]. 

We now state the main results relating A and "IF, cyclic homology and 
equivariant homology, 

Theorem 3.1. Let X be a cyclic space, then lr acts on IXI in such a way that: 
(i) X ~ [ X I  becomes a Junctor from the category of cyclic spaces to the 

category of spaces with a circle action and equivariant maps. 
(ii) There are natural isomorphisms 

HC.(S.X)~HT.(IX[)  as K[u] modules 

HC.(S.X)~I~I~.(IXI) as K[u,u -t]  modules 

HC,(S .X)~G~,(IXI)  as K[u] modules. 

These isomorphisms throw the fundamental exact sequence for cyclic homology 
onto the fundamental exact sequence for equivariant homology. 

This theorem, without the H C -  statement, can deduced from [7, 13 and 
14]. The precise relation between the category of cyclic sets and spaces with 
circle action is carefully studied in [13]. 

Now let Y be a cocyclic space; there is a natural chain 
map~,: C(S*Y)~S*(IYI) where C(S*Y) is the Hochschild complex of the 
cyclic chain complex S*(Y), see w for a definition of 0. We say that Y 
converges if 0 induces an isomorphism in homology; these matters are dis- 
cussed in [6, w 7] and [2]. 
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Theorem 3.2. Let Y be a cocyclic space, then ~ acts on IYI in such a way that: 

(i) Y ~ I Y [  becomes a functor from the category of cocyclic spaces to the 
category of spaces with a circle action and equivariant maps. 

(ii) I f  Y converges there are natural isomorphisms 

H C ,  (S* Y)~H*(JY[) as K[u] modules 

HC,(S*Y)~-I4*(IYI) as K[u,u -a] modules 

HC,(S*Y)~G~(IYI)  as K[u] modules. 

These isomorphisms throw the fundamental exact sequence for cyclic homology 
onto the fundamental exact sequence for equivariant cohomology. 

Theorem 3.3. Let Z be a space with a circle action. The function n-~ S.(Z) can 
be made into a cyclic K module S,(Z) in such a way that: 

(i) Z ~ S , ( Z )  becomes a functor from the category of spaces with a circle 
action to the category of cyclic K modules. 

(ii) There are natural isomorphisms 

HC,(S,Z)~-HT,(Z) as K[u] modules 

H ~ , ( S , Z ) g I ~ , ( Z )  as K[u,u -1] modules 

H C,  ir Z K [u] modules. ( S , Z ) G , (  ) as 

These isomorphisms throw the fundamental exact sequence for cyclic homology 
onto the fundamental exact sequence for equivariant homology. 

In [17] the question of products in the various cyclic homology and 
cohomology theories is discussed and it is proved that the isomorphisms of 
Theorems 3.1, 3.2 and 3.3, and therefore Theorems A and B, respect the 
products one can define in the cyclic theories and the equivariant theories. 

To begin the proof we analyse the cyclic sets 2" defined by 2"(m)=A(m, n) 
and their realisations 12"]=A". Note that n - , A "  defines a cocyclic space which 
will be denoted by A'. There is another cocyclic space 1r x d ,  compare [14]; 
the face and degeneracy maps are given by the products of the identity map of 
"IF with the usual face and degeneracy maps of A" and z, is defined by 

%(z, u o . . . . .  u.)=(z e x p ( -  2~ziu0), ul, ..., u., u0). 

Here z~Ir and we have identified A" with the set 

{(Uo . . . . .  u.)10_-< ui-_< 1, ~ u i =  1} ~F .  "+1. 

It is straightforward to check that the relations 1.1(a)-(d) hold. 

Theorem 3.4. There is an isomorphism of cocyclic spaces A'~-~ x d'. In particu- 
lar the circle acts on A n in such a way that the structure maps of the cocyclic 
space A" are equivariant. 

This is proved in [13]; nonetheless, for the sake of completeness and also 
because we will need some of the details later, we give the proof. 
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P r o o f  o f  3.4. Order  the vertices of  A n as v o . . . .  , v, where 

v~ = (0 . . . .  ,0,  1, 0 . . . . .  0) 1 in the (i + 1)-th place 

and now tr iangulate  R x A" as follows. The  vertices of the t r iangula t ion  are the 
points  (i, v,) where i is an integer. The  vert ices are ordered  lexicographical ly,  
that  is (i, Vr)<(j,v~) if ei ther i < j  or i = j  but  r < s .  The q simplices of  the 
t r iangula t ion  are of  two types, first those with vertices 

(i, v,s ), (i, v . . . .  ) . . . . .  (i, v,,), ( i+  1, V,o ), ( i+  1, v,,) . . . . .  ( i -  1, v,s ,) 

where r o < r 1 < . . .  < rq and then those with vertices 

(i, v , ) ,  (i, v . . . .  ) . . . . .  (i, Vr,_ ,), (i + 1, Vro), (i + 1, Vr ) , . . . ,  (i + 1, v,~) 

where r o < r 1 < . . .  < rq_ 1. D i a g r a m  1 shows the t r iangula t ion  of [0, 2] x A2 ~ 1/ 
•  2. 

(2'vo) ' ~ ~  (2'v2) 

(l'v~ ' ~  ~ (1'v21 

(O.v o ) (O,v 2 ) 

(O.v 1 ) 
Diagram I 

Let Z" be the simplicial  set genera ted  by this t r iangula t ion  of 1t x A" and 
define an opera t ion  flq on the q simplices of 27" as follows. Suppose  that  the last 
vertex 'of ~ is (i, Vk), then the vertices of  flqa are the same as the vertices of a 
except  that  (i, Vk) is replaced by ( i -  1, VR). It is clear that  ( i -  1, Vk) now becomes  
the first vertex of flqa. One  can easily check that  d i f l q= f lq_ ld i_ l ,  do f lq=d  q, sift q 
= f l q + l s i _ l  and  finally so f lq=f i~+ls  q where the opera t ions  di, s i are the usual 
face and degeneracy operat ions.  Therefore  the opera t ions  di, s i and ft, satisfy 
the opposi tes  of the relat ions 1.1 (a)-(e) but  no t  1.1 (d) that is f l q + l #  1, in fact 
flqq+l s imply takes a q s implex o f ~  x A" and translates it by - 1 .  

N o w  note  that  the n + 1 s implex with vertices 

(i, vr (i, vr+ 1) . . . . .  (i, vn), (i -4- 1, Vo) . . . . .  (i + 1, v r_ 1), (i -4- 1, v,) 

is the s implex a-lt .+21~ a . - , ,  �9 since every simplex in the t r iangula t ion  of ~. Pn+ l ~nPn "n~ 

x A" is a face of  such a s implex the simplicial  set ,~" is generated,  using the 
opera t ions  dl, s i and  flq, by the  s implex ~ .=0  x d". T h e  only relat ions be tween 
these opera t ions  are the relat ions 1.1 (a)-(e). The  simplicial  set 2" is genera ted  
using the opera t ions  di, s~ and  tq by the identi ty m a p  in A(n,n)  but  these 
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operations satisfy all the relations 1.1. Therefore 2" is obtained from Z" by 
identifying fl~+1 with the identity. It now follows that A" is obtained from ]Z"] 
= ~ ,  x A" by identifying two points if their 1t coordinates differ by an integer. 
This proves that A" is homeomorphic  to "If x A". 

It remains to check that this does in fact give a homeomorphism of "If x A" 
with A" as cocyclic spaces. But note that a map of cyclic sets ;L"--*;~" is 
completely determined by its value on the identity map z,eA(n, n) and it is not 
too difficult to check that the structure maps of IF x A" as a cocyclic space map 
simplices to simplices and are linear on each simplex. So by determining their 
effect on 0 x A" one can check that they correspond, under the above ho- 
meomorphism, to maps induced by appropriate maps of cyclic sets. 

Lemma3.5.  The simplices t,+ l s, ti.t,, O <=i <=n, are the nondegenerate n+ [ sim- 
plices of 2". 

Proof This is a simple consequence of the proof of 3.4. 

We can now describe, in the notation of 3.1, 3.2 and 3.3, the action of IF on 
[X], [Y], the cyclic structure of S.(Z) and so prove the first statements in 3.1, 
3.2 and 3.3. If X is a cyclic space, then by definition IXI is the space 

LI X(n) x A"/(~o*x, t)--(x, ~p,t) 

where ~p runs through the morphisms in A. However  using the cyclic structure 
of X we see that [XI is the same as 

L[ X(n) x A"/(O* x, t)=_ (x, O. t) 

where now 0 runs through the morphisms in A. However, from 3.4, "ff acts on 
A" in such a way that the cocyclic structure maps 0 .  are equivariant and so we 
get an induced action on ]X]. 

To give the action of 11" on the realisation of a cocyclic space Y we argue 
firstly that Hom~ (A', Y)= HomA(A', Y) and secondly that since ~ acts on A" in 
such a way that the cocyclic structure maps are equivariant Hom (A', Y) is a 
IF invariant subspace of ]-[ Map (A", X(n)) where the action of IF on the 
mapping space is given by its action on A". 

Finally to give the cyclic structure of S.(Z) note that using the 11" action on 
Z we see that Map(A", Z)=Maplr ( ' l r  x A",Z) and since the cocyclic structure 
maps of IF x A" are IF equivariant we get a cyclic structure on Map(A", Z) and 
therefore on S.(Z). 

w 4. The B operator 

As in w 3 let X be a cyclic space, Y a cocyclic space and Z a space with an 
action of 11". We get cyclic chain complexes S. (X)  and S*(Y) and, from 3.1, 
a cyclic K module S.(Z). In this section we give a geometric interpretation of 
the B operators in these three cyclic objects in terms of the IF action on the 
spaces IXI, [YI and Z. Let U and V be spaces; from now on, we write 
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0: S,(U) | S,(V) --* S , (U x V) for the chain equivalence deftned by the Eilenberg 
McLane shuffle product. 

Let W be a space with a circle action f :11"xW--*W. Then 
0: S , ( 1 [ ) |  s , ( J r  x w)  and the map .f give chain level operations 

I: S-"(W)~S-"+I(W), J: S,(W)~S,+I(W) 

defined by the formulas I(x)=(-1)l~lf*x/z, J ( x ) = ( - 1 ) l x l f ,  O(z| where z is 
the fundamental 1-cycle in S 1(~). The slant product, or  integration, operation 
is defined by the formula (a/z, x)= (a, O(z | for aeS*(lr x W). Since z is a 
cycle 6 1 = - 1 6  and d J = - J d .  From the explicit formula for 0 one can check 
that 12=J2=0. 

Let C, (X)  and C,(Y)  be the Hochschild complexes of the cyclic chain 
complexes S,(X) and S*(Y) respectively and continue to write S,(Z) for the 
Hochschild complex of the cyclic K module S,(Z). There are natural chain 
mapstp: C,(X)~S,(IXI) and ~: C,(Y)~S*(IYD and the main purpose of this 
section is to prove the following result: 

Theorem 4.1. There are natural maps h: C,(X) --* S ,([XL), j :  C,(Y) ~ S*(] YI) and 
k: S,(Z)-*S,(Z) which raise degree by two and satisfy the formulas dh-hb 
=Jtp-tpB, 6j-jb=Itp-~bB and d k - k d = J - B .  

The essential meaning of this theorem is that the following diagrams 
"commute  up to a natural chain homotopy ' :  

C,(X) ~ , S,(IXI) C,(Y) ';' ' S*(IYI) 

c,+l(x) - ~  s , + l ( I X l )  c,+~(Y)-~-~s*+'(Igl), 

and that there is a natural "chain homotopy"  between the mapsB and J 
defined on S,(Z). However this is not quite accurate since neither B, J nor ! 
are chain maps, Bb=-bB,  Jd= - d J  and 16= -61. 

We begin the proof by describing the chain map tp. By the construction of 
the realisation of a simplicial space there are maps n,:X(n)xA"--*]XI. If 
x~Sq(X(n)) then ~o(x)=n,,O(x| where K,~S,(A") is the fundamental n sim- 
plex. Let ~i be the inclusion of the i-th face of A" so dK,=~(--1)i6i,K._l, 
From the identifications in the construction of IX[, n,,O(x| 
=(n,_O,O(di,x| 0 where d/: X ( n ) - ~ X ( n - l )  is the structure map of X. It 
follows that q~bn(x)=n.,O(x| and it is now easy to check that ~o is a 
chain map C,(X)--*S,(IXI). Using the cyclic structure of X these maps n, 
extend to maps p,,: X(n) x A" --, IX[ and, from the definition of the 11" action on 
IXI, the p. are equivariant. Therefore if xESq(X(n)), q~(x)=p,,O(x| where 
I.eS,(A") is the fundamental n simplex and q)B(x)=p,,O(x | B1,). 

The most important  observation is that from 3,5 and the definition of the B 
operator we see that in the simplicial set 2", or  geometrically in A", Bt ,  is the 
fundamental class modulo degenerate n + 1 simplices. This is the element which 
is the sum of the nondegenerate n +  1 simplices, each with a sign attached and 
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the signs are chosen so that when we take the boundary, common faces cancel 
in pairs. Now regard An as a space with "IF action, then J(ln) will give another 
fundamental  class in S,+I(An). It follows that in general, modulo degenerate 
simplices, q~B(x) and J(q~x) represent the same geometric chain but  this chain 
is divided up into simplices in different ways. A routine acyclic models argu- 
ment (see [16, 29.95] for the method of acyclic models), which we outline 
below, proves Theorem4.1;  essentially up to chain homotopy this makes no 
difference. 

We start by proving 4.1 in the case where X is a cyclic set, that is a discrete 
cyclic space. Suppose that we have defined h(x) for all elements x of total 
degree < n  then we will define h on elements of degree n by induction. By 
naturality it is sufficient to define h on the universal example t,~ C,(2n). From 
our inductive hypothesis we have defined Q=hbOn)+J~o(tn)-q~B(ln) and Q is a 
cycle of degree n + l  in S.(A"). Provided n > 0  the homology of S.(An) is zero 
in degree n + l  so this cycle is a boundary and we can define h(t,) by choosing 
an element whose boundary is Q. If n = 0  then it is easy to check directly that 
Q is a boundary and so we may start the induction. 

The proof when X is a cyclic space is identical except that we must use the 
elements O(ls ln)eS,(Akx An) as universal examples. 

Now let Y be a cocyclic space; we first describe the map 
qJ: C.(Y)  ~S*(IYI). The inclusion IYI ~ 1-[ Map(A", Y (n)) gives maps 
en: An x [Yq ~ Y ( n )  and, for x~Sq(Y(n)), O(X)=e*(X)/Kn, where ~, is the funda- 
mental n simplex in S.(An). The following diagram commutes 

AnxlyI- ~~ Y(n) 

A m x I Y I ~ - ~  Y(m) 

where s is any morphism in A. Therefore ~(6" x) = o~,_ 16i X/~n- 1 -- :tn X/6i* ~,- 1" 
It now follows that ~(blX)=Ct*x/d~c n. We use the following sign convention for 
the coboundary operator 6 on singular cochains: (3c, x> = ( -  1) tcl+l (c, dx>, 
compare 1-22, p. 258]. This leads to the formula 6(x/a)=fx/a+(-1)lXlx/da. It 
now follows that $(bx)=6$(x), that is t# is a chain map. 

Using the cocyclic structure of Y and the definition of the 117 action on IYI 
these maps ~, extend to maps ft,: Anx IY[ ~ r(n)  and so ~(x)=fl*(x)fi, where 
5, is the fundamental  n simplex in Sn(A"). Furthermore the following diagram 
commutes 

A"xlY] t~,_~ Y(n) 

A m x Y I ~  Y(m) 

where t is any morphism in A. The above argument gives, for any cyclic set, a 
natural chain homotopy h such that dh-hb=q~B-Jq~ and, using this ho- 
motopy in 2", we define a map  j :  C,(Y)~S*([Y[) by the formula j(x) 
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=f l*x /hO, )  if xeSq(Y(n)) .  We now compute 6 j ( x ) - j b ( x ) :  

6j(x) = fl*(6x)/h(z.) + ( -  1)q fl*(x)/dh(~.) 

j b (x) = fl*_ 1 (bH x)/h (t ,_ 1 ) + ( - 1 )q fl* (6 x)/h (l,). 

From the above diagram, [1" 1 (b .x) /hO,  1) = ~ ( -  1)i [1. (x) /6i .  hO" 1). How- 
ever h is natural with respect to maps of cyclic sets so 6 i . h O , _ l ) = h ( 6 ~ . ~ .  1) 
and therefore [1" 1 (b .x ) /h( t ._  1)= [1*(x)/h(dl,). Therefore we have proved that 
6 j ( x ) - j b ( x ) = ( -  1)q[1*x/J(pO,)-(  - 1)q[1*xflpBO.). Using 4.2 and the definition 
of B (taking care over the signs in the definition of B) one can check that 
[1*x f lpBO,)=(- l )q~bB(x) .  From the definition of the action of II" on [YI one 
can check that the map [1,: A " x  I Y l ~ l r x  A"x  ]Y[--* Y(n) is the composite of 
first the map defined by the 11" action and then the map c~.. It now follows 
(taking care of the sign introduced by switching 11" and A" so that we may first 
apply the map defined by the ]F action) that [ 1 * x / J q ) ( t , ) = ( - l ) q l O ( x )  and so 
6j(x)  - j  b (x) = l~b (x) - ~ B (x). This gives the natural chain homotopy. 

The proof of (ii) is a straightforward modification of the proof of (i) in the 
case of cyclic sets. 

We close this section with a final observation concerning the B operator. If 
we make the circle act on 11" x A" by z(w, t )=(z  -1 w, t) and give IX] the induced 

action and corresponding J operator, then one can check that, modulo 
degenerate simplices, ~pB= -Jq~.  We have chosen not to exploit this fact in the 
proof of 4.1 simply to make it clear that the result does not in any way depend 
on the precise choice of the chain equivalence 0. 

w 5. Equivariant homology and cohomoiogy theories 

Let W be a space with an action of the circle f :  Jr x w - ~  w. Introduce the 
polynomial ring K l-u] where u has degree - 2  and form chain complexes 

U - ( W ) = K [ u ] |  differential ~ -  

U ^ ( W ) = u - I U - ( W )  differential 0 ^ 

U § (W) = U ^ ( W ) / u U -  (W) differential ~+. 

The differential ~ -  is defined by the formula ~ - = d + u J  and ~+, 0 ̂  are the 
induced differentials, 

Ir W Lemma 5.1. There is a natural isomorphism o f  H , ( U  + W) with H ,  ( ). 

Proo f  It is not  too difficult to convince oneself that the chain complex U+(W) 
is in fact an explicit model for the chains on E ~  x ~ W. One proof  is to use the 
fact that E Y  x ~W is the geometrical realisation of the following simplicial 
space; in degree n we put ~"  x W, the face maps are given by 

do(t 1 . . . . .  t , ,  w)=(t  2 . . . . .  t., w) 

di(t 1 . . . . .  t . , w ) = ( t  1 . . . . .  titi+ 1 . . . . .  t , , w )  l < i < n - 1  

d,( t  x . . . . .  t , ,  w ) = ( q  . . . . .  t ._  l, t, w) 
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and the degeneracy maps are given by inserting the unit of g. Let M, be the 
total complex of the simplicial chain complex n ~ S , ( ] l ' " x W )  so that the 
homology of M,  is H,(ETY x vW). The chain equivalence 0 and the multiplica- 
tion map of ~ make S,(]I') into a strictly graded commutative (that is the 
square of an element of odd degree is zero) DGA and S,(W) becomes a 
module over S,(]r). There is a map from (the total complex of) the bar 
complex for S,(W) over S,(]r) to M,  which is an isomorphism in homology. 
The inclusion of the exterior subalgebra E(z)-,S,(TY), where z is the fundamen- 
tal 1 simplex, is a chain equivalence. Now make S,(W) into a module over 
E(z) by setting zx=Jx  so there is a map of the bar complex of S,(W) over 
E(z) into M, which is an isomorphism in homology. Finally, there is a 
canonical equivalence of the bar complex of S,(W) over E(z) with the complex 
U+(W). 

We now define the equivariant homology theories: 

H~,(W)=H,(U+(W)), I~,'(W)=H, fU^(VO), G~,(W)=H,(U-(W)). 

In view of Lemma 5.1, this definition of H~,(W) agrees with that given in 
the introduction. Since forming homology and localisation commute, H,(W) 

-1  ~" W =u G,( ). 
To define the equivariant cohomology theories we use chain complexes 

V-(W), V^(W) and V+(W) obtained by replacing S,(W) by S*(W) and J by 1. 
The definitions are as follows (recall the grading conventions introduced in 
w 

H~(W)=H,(V-(W)), ~*(W)=H,(V^(W)), G*(W)=H,(V+(W)). 
As before we easily deduce tha t /4~(W)=u 1H*(W). Note that if we write 

out V-(W) as a double complex with columns copies of S*(W), vertical 
differential 6 and horizontal differential I, then V-(W) lies in the purely 
negative quadrant and so H~(W) is concentrated in negative degrees. The 
argument given in 5.1 shows that H*(W) is isomorphic to H*(E~Yx~W), 
negatively graded. 

We now describe some of the formal properties of these equivariant theo- 
ries. The module structure over the coefficient rings is clear from the definition. 
One can check that in the cases of H~,(W) and H~r(W) this module structure 
coincides with the action of H*(BTY) on H,(E.'IFx~sW ) and H*(E'1YxT:W) 
defined using the slant product and the cup product respectively. The funda- 
mental exact sequences come from the short exact sequences of chain com- 
plexes 

O-~U-(W)-~U^(W)-~uU+(W)-~O, O-~V-(W)-~VA(W)-~uV+(W)-~O. 

These equivariant theories have the following strong invariance property. 

Lemma 5.2. Let f: W 1 ~ W 2 be an equivariant map which induces an isomorphism 
in ordinary homology and cohomology. Then f induces an isomorphism in each of 
the above theories. 

Proof. The proof is completely analogous to the proof of 2.1. 



Cyclic homology and equivariant homology 419 

We now begin the proofs of 3.1, 3.2 and 3.3. Let X be a cyclic space then 
we write C (X), C^(X)  and C+(X) for the chain complexes of w defined by 
the cyclic chain complex S,(X). The idea in the proof of 3.1 is that we know 
we can replace S,(]X]) by the Hochschild complex C,(X) (we are assuming 
that a simplicial space is automatically good so that the chain map q~ of w 
induces an isomorphism in homology) and by 4.1 we should be able to replace 
J by B without altering homology. However the problem we must overcome is 
that we do not yet have a natural chain map between the C complexes and the 
U complexes. 

LemmaS,3.  (i) There is a natural K[u] module chain map (: C ( X ) - * U  ([X]) 
such that the induced map C- (X)/uC- (X)= C , (X)-*  U- (IXI)/uU- (IXI) 
=S,(IXI)  is the chain map qa. 

(ii) Any two natural chain maps (1 and (2 satisfying the conditions in (i) are 
naturally chain homotopic. 

Pro(~ Pick a natural K[u] module map h such that d h - h b = J t p - t p B ,  see 4.1. 
As a K[u] module, C - ( X )  is free with basis C,(X) and therefore it is sufficient 
to construct ( on C,(X). For x~C, (X)  write ((x)=y,( , (x)u ~ where 
(,: C,(X)--*S,(iXI) is a K linear map which raises degree by 2n. In order that 
the K[u] linear extension of ( be a chain map the (,  must satisfy the following 
formula: 

(5.4) ~ , b + ~ .  1B =d~n- ] - J (n_ l  . 

We construct ( ,  inductively starting from (o=q) and (1 =h.  Suppose that 
n=>2 and we have defined ~i for i<n. We then suppose that we have con- 
structed (,  on elements of degree < m  and inductively construct ~, on elements 
of degree m. 

First we deal with the case where X is a cyclic set so, by naturality, it is 
sufficient to construct ( ,  on the element ~,,eC,,(2"). Now by our inductive 
hypotheses we have determined the element w = ( ,b 1,~ + (,_ 1B t,. - J ~,_ 17,, and 
dw=O. However the degree of w is m -  1 + 2 n  and therefore, since n > 2  and the 
homology of S.(A") is zero in degrees_>_2, w must be a boundary. Therefore we 
can define ~.(l,,) by choosing an element whose boundary is w. This process 
will serve to define (,  on elements of degree zero and so begin the induction. 
The proof when X is a cyclic space is identical except that we must replace the 
cyclic sets 2" by the cyclic spaces ) /"x  A k. The proof that any two choices of 
chain equivalence ( are chain homotopic  is almost identical. 

Proof of 3.1. Let ( be the chain map constructed in 5.5; ( extends to a chain 
map C A (X)--* U ^ (IX]) and induces a chain map C+(X)~  U + (IxI). These chain 
maps induce isomorphisms in homology by the argument of 2.1. 

Now let Y be a cocyclic space, then we write C-(Y) ,  C^(Y)  and C+(Y) for 
the chain complexes of w 3 defined by the cyclic chain complex S*(Y). 

LemmaS.5.  (i) There is a natural K[u] module chain map ~: C - ( Y ) ~ V - ( [ Y ] )  
such that the induced map C - ( Y)/u C -  (Y) = C ,  (Y) -~ V - ([ Y ])/u V - ([ Y [) = S* ([ Y [) 
is the chain map ~. 
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(ii) Any two natural chain maps ~1 and ~2 satisfying the conditions in (i) are 
naturally chain homotopic. 

Proof As in the proof of 5.3 we need maps 3,: C,(Y)~S*(IY[)  which raise 
degree by 2n and satisfy the equation 

( 5 . 6 )  ~ , b + ~ , _ l B = d ~ . + l ~ , _  1. 

The construction of the r and the proof that they satisfy 5.6 proceeds by 
analogy with 4.1 in the case of a cocyclic space. Pick natural maps ~. as in 
5.3 and define 3, on S*(Y(m))=C,(Y)  by the formula r 
A straightforward argument completes the proofs, 

Proofs of 3.2 and 3.3. The deduction of 3.2 from 5.5 is identical to the 
deduction of 3.1 from 5.3 except that we must use the convergence hypothesis 
on the cocyclic space Y to deduce that the chain maps given by ~ induce 
isomorphisms in homology. The proof of 3.3 is an easy modification of the 
proof of 3.1. 

w 6. The proofs of theorems A and B 

The main ingredients in the proofs are the following results. 

Theorem 6.1. Let X be a topological space and let X ~ be the cocyclic space of 
example 1.2. Then there is an equivariant homeomorphism ]X~ 

Theorem 6.2. Let G be a topological group and let G be the cyclic space of 
example 1.3. Then there is an equivariant map IGI ~ L B G  which is an ordinary 
homotopy equivalence. 

Theorem 6.2 is also proved in [14, w V], and also in [7]. We also need the 
following technical lemma. 

Lemma 6.3. I f  X is simply connected then X ~ converges. 

Proofs of Theorems A and B given 6.1, 6.2 and 6.3. By 6.1, 3.2 and 6.3 we know 
that H C ,  (S*X ~ ~ H ~ ( L X )  and so on. However using the Alexander Whitney 
chain equivalence S * ( U ) |  V) we get a map of cyclic chain 
complexes from the cyclic chain complex generated by S*(X) (see Example 1.4) 
to S*(X ~ which, from 2.1, is an isomorphism in all forms of cyclic homology. 
This proves Theorem A. 

To prove Theorem B use 6.2, 3.1 and an almost identical argument. 
We now prove 6.1. Let E be a cyclic set and X a topological space, and 

define a cocyclic space X E by setting X~(n)=Map(E(n), X) with the obvious 
cocyclic structure. By 3.1 and 3.2 there are "IF actions on the spaces [El and 
IX~t. 
Lemma6.4. There is a natural equivariant homeomorphism between the spaces 
IS~l and Map(IEI, X). 

Proof This is almost a tautology and is left to the reader. 
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Proof of 6.1. Simply observe that X ~ is X e where E = 2  ~ and use 3.4. 

Proof of  6.3. See [2] and [6, w 5]. 

We now start on the proof of 6.2. Let S be a simplicial set satisfying the 
Kan condition [21]. Let Y,= Hom~(2~, S) and make n-oY, into a cyclic set Y 
using the maps 2"--> 2 m induced by morphisms n-o  m in d. 

Lemma6.4.  There is an equivariant map IYI--oL(ISI) which is an ordinary ho- 
motopy equivalence. 

Proof. We construct maps Y,•  as follows: Given f ~ Y ,  then f 
defines a map I l l :  A '~ ]S ] .  F rom 3.4, A" can be identified with ~ •  and the 
loop in I Sl corresponding to (f, t) is given by z-o  if.l(z, t). It can be checked that 
these maps induce an equivariant map from IYl-~L(]SI). It is a standard fact 
from the theory of function complexes for simplicial sets [21], that this map is 
an ordinary homotopy equivalence. 

Proof of  6.2 when G is a discrete group. We define BG to be the realisation of 
the simplicial set B.G defined as follows: In degree n we put the set G';  the 
face maps are given by the following formulas: 

do(g1 . . . . .  g,) =(g2 . . . . .  g,) 

di(gl . . . .  , g , )= (g l  . . . . .  gigi+l . . . . .  g,) l ~_i~_n-1 

d,(gl . . . . .  g,) =(g l  . . . . .  g,-1). 

The degeneracy maps are given by inserting the unit. F rom the proof of 3.4 
we see that 2" is generated, using the face and degeneracy operations, by the n 
+ 1 dimensional simplices t, + a s, t i,+ 1 ~,, 0 <= i <-_ n, and therefore a map 2" -~ B. G 
of simplicial sets is determined by its values on these simplices. Taking account 
of the explicit form of the structure maps of 2" and B.G we find that a 
simplicial map between them is determined by its value on t ,+ ls ,  z , and this 
can be any element of G "+1. One now checks that the cyclic spaces G and 
Mapa(2 ~, B.G) are isomorphic. Since B.G is satisfies the Kan condition, Lemma 
6.4 completes the proof. 

Proof of  6.2 in the general case. We will need to use the following well known 
fact about bisimplicial sets S..: The realisations of the simplicial spaces 
n-o  iS,.] and m-o IS.ml are naturally homeomorphic  and are in turn homeomor-  
phic to the realisation of the simplicial set n--*S,.,. We will use I]S..11 to denote 
this space. For  example if H. is a simplicial group then we can naturally 
associate to H. the following versions of its classifying space, a bisimplicial set 
B.H., a simplicial space BH. and since {H.] is a topological group a space, 
BIH.i. There are homeomorphisms of IIB.HoII with both BIH.I and the re- 
alisation of the simplicial space BH.. 

To deal with the general case of 6.2 we first observe that if G is a 
topological group then there is a simplicial group H. and a homorphism of 
groups G--*]H.] which is a homotopy equivalence; therefore BG and BIH.I are 
homotopy equivalent. Now define L,.m to be Homz(2",B.Hm) so that L.. 
becomes a bisimplicial set. F rom 6.4 there is a homotopy equivalence 
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[L.,,[~L(BH,,). Next we invoke a theorem of Anderson [3] to tell us that 
since BH,, is a connected space for each m, the natural map IL(BH.)I ~ LfBH.I 
=LBIH.] is an equivalence. Each of the spaces L(BH,,,) have Jr actions and the 
structure maps of the simplicial space L(BH.) are "IF equivariant so IL(BH.)I 
has a natural action of "IF and the natural  map IL(BH.)[-.LBIH.I is equi- 
variant. Now since BG and BIH.I are homotopy equivalent there is an equi- 
variant homotopy equivalence LBIH.I ---, LBG. To sum up we have constructed 
a "IF equivariant map IlL-I[ ~ LBG which is a homotopy equivalence. 

Now use the special case of 6.2 proved above to identify L,,,, with (Hm) "+1 
and since realisations commute with products IL,.I=IH.] "+1. Therefore n-+IL,.I 
is the cyclic space generated by the topological group IH.I. The map G~]H.I 
gives a map from G, the cyclic space generated by G, to the cyclic space 
generated by ]H.t which is a homotopy equivalence at each level and therefore 
gives a homotopy equivalence of realisations. Therefore we get a map 
IGI--" ]}L..[} which is a homotopy equivalence. Since this map is defined by a 
map of cyclic spaces it is automatically Jr equivariant. 

In total we have constructed a Jr equivariant map IGI--*LBG which is 
equivariant and a homotopy equivalence. This proves 6.2. 

w 7. An application of Theorem A 

Let X be a simply connected manifold and suppose that we have taken 
coefficients in • or ~.  Then in Theorem A we may replace the singular 
cochain algebra of X by the de Rham algebra of differential forms ~*(X) and 
then use the methods of rational homotopy theory [23, 26, 12, 15]. The notion 
of equivalence between commutative DGA's  is the equivalence relation generat- 
ed by the relation A ~ B  if there is a map of DGA's  A-+ B which is a chain 
homotopy equivalence. A commutative D G A  is said to be formal if it is 
equivalent to its homology algebra. A simply connected manifold is said to be 
formal if its de Rham algebra is equivalent to its cohomology algebra. Exam- 
ples of formal manifolds are simply connected compact symmetric spaces [4, 
15] and simply connected compact Kahler manifolds [12 I. 

Theorem 7.1. Suppose X is a simply connected formal maniJbld. Then, using the 
grading conventions of w 3, there are isomorphisms 

HC,(H*X)~-H*(LX) as K[u] modules 

HC,(H*X)~-H*(LX) as K[u,u -1] modules 

HC,(H*X)~-G~(LX) as K[u] modules. 

These isomorphisms throw the fundamental exact sequence of cyclic ho- 
mology onto the one for equivariant cohomology. 

Proof. This is a simple consequence of the definition of formal, 2.1 and 
Theorem A. 
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