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Midterm 1 SOLUTIONS

Instructor: Prof. David Nadler
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September 27 to October 1, 2021

Instructions
You may work on this exam at any point between 9:00AM on September 27, 2021 and
11:59PM on October 1, 2021. Before the October 1 deadline, complete and upload your
solutions to the three problems below on Gradescope.

You are permitted to use your textbook, your notes, and any other resources that you have
produced or that the instructor has provided as part of this course. No external material is
allowed.

You are not permitted to discuss these problems with your fellow classmates or anyone else
until the solutions have been posted. All work must be your own.

Email the instructor (Professor Nadler) or GSI (Ethan Dlugie) if you have any issues. Oth-
erwise, good luck!
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Questions

1. Show that a CW complex is compact if and only if it has finitely many cells.

Solution: Suppose X is a CW complex with finitely many cells en1
1 , . . . , e

nk
k with char-

acteristic maps Φi : Dni
i → X. Then X is covered by the images of the characteristic

maps, i.e. X =
⋃k
i=1 Φi(D

ni
i ). Since the characterstic maps are continuous and disks are

compact, each Φi(D
ni
i ) is compact. As a finite union of compact sets is compact, one

sees that X is compact.

For the converse, we claim that any subset S ⊂ X of a CW complex which has at
most one point in any cell is both closed and discrete. For closedness, we induct on
the dimension of skeleta of X. Of course S ∩X0 is closed, because X0 has the discrete
topology by definition. Now suppose S ∩ Xn−1 is closed. Then for each n-cell enα with
attaching map φα : Sn−1 → Xn−1, one has that φ−1

α (S) = φ−1
α (S ∩ Xn−1) is closed in

Sn−1 = ∂Dn
α. With the characteristic map Φα : Dn

α → Xn, one sees that Φ−1
α (S) consists

of at most one more point than φ−1
α (S). Thus S ∩ Xn is closed. Since CW complexes

have the weak topology, this shows that S is closed in X. The same argument shows
that any subset of S is closed, and so S is discrete as well.

Now suppose that X is compact. Take S ⊂ X to consist of exactly one point in each
cell. Concretely one can take S to consist of one point in the center of each cell, thinking
of an n-cell as the open unit ball in Rn. Then S is a closed, discrete subset of a compact
space and so must be finite. Thus X is composed of finitely many cells.



2. Let X be the quotient space of the cube I3 by identifying each square face with the
opposite square face via a 180◦ twist. Find a cell structure for X and use it to show that
π1(X) ≈ Z/2Z.

Solution: By Hatcher’s Proposition 1.26(c), the fundamental group of the space X is
isomorphic to the fundamental group of its 2-skeleton X2. So we will ignore the 3-cell
provided to us by the cube.

The eight 0-cells of I3 descend to four 0-cells for X. The twelve 1-cells of I3 descend to
six 1-cells for X. And the six 2-cells of I3 descend to three 2-cells of X. We have

• Four 0-cells, v1, v2, v3, v4.

• Six 1-cells e1, . . . , e6 attached to the 0-cells as indicated in the figure.

• Three 2-cells f1, f2, f3 attached to the 1-skeleton as indicated in the figure.

To find a presentation for π1(X), pick a spanning tree for X1. Then π1(X
1) is the free

product of three copies of Z, one for each 1-cell not included in the spanning tree. The at-
taching maps for the 2-cells give elements r1, r2, r3 ∈ π1(X1), and simple-connectedness of
the 2-cells together with van Kampen’s theorem shows that π1(X) ≈ π1(X

1)/〈r1, r2, r3〉
as in Hatcher’s Proposition 1.26(a).

With the spanning tree shown below, bolded in black, we have generators e1, e2, e3 for
π1(X

1) ≈ Z ∗ Z ∗ Z. The 2-cells give elements e1e2e3, e2, e1e
−1
3 ∈ π1(X1). Thus π1(X) =

π1(X
2) has a presentation given by

π1(X) ≈ 〈e1, e2, e3 | e1e2e3, e2, e1e−1
3 〉.
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The second relation shows that e2 is trivial, and the third relation shows that e1 = e3.
So the presentation reduces to

π1(X) ≈ 〈e1 | e21〉.

In other words, one has π1(X) ≈ Z/2Z.

Remark: Centering the the cube at the origin in R3 and scaling all points appropri-
ately gives a homeomorphism between I3 and the closed 3-ball B3. The identifications
proposed in this problem then just identify antipodal points on the boundary S2 of
this ball, showing that X is exactly the real projective space RP3. In general, one has
π1(RPn) ≈ Z/2Z for n ≥ 2.

3. For i = 1, 2, consider the space Mi obtained by identifying two copies of the solid torus
S1 ×D2 along their boundary tori S1 × S1 by the map fi : S1 × S1 → S1 × S1 where

f1(p, q) = (p, q) and f2(p, q) = (q, p).

Show that M1 and M2 are not homeomorphic.

Solution: The solid torus has a cell structure consisting of one 0-cell, two 1-cells, two
2-cells, and one 3-cell. By Hatcher’s Proposition 1.26(c), we can ignore the 3-cell for
the purposes of computing fundamental groups. Pictured here is the 2-skeleton of a
solid torus with 0-cell v, 1-cells a and b, and 2-cells attached by the elements b and
aba−1b−1 in the free group generated by a and b. Note that the torus S1 × S1 appears
as a subcomplex of this 2-complex, and that a and b trace out the two circle factors of
the torus.
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Given two copies of this 2-skeleton, the map f1 identifies their torus subcomplexes by
the identity map. Thus M1 has a CW structure whose 2-skeleton consists of one 0-cell
v, two 1-cells a and b, and three 2-cells attached by the elements b, aba−1b−1, and b. This
gives a presentation

π1(M1) ≈ 〈a, b | b, aba−1b−1, b〉
≈ 〈a | aa−1〉
≈ Z.

On the other hand, the map f2 swaps the role of a and b in the second solid torus. Then
M2 has a CW structure whose 2-skeleton consists of one 0-cell v, two 1-cells a and b,
and three 2-cells attached by the elements b, aba−1b−1, and a. This gives a presentation

π1(M2) ≈ 〈a, b | b, aba−1b−1, a〉 = 0,

the trivial group. Evidently π1(M1) 6≈ π1(M2), so M1 and M2 are not even homotopy
equivalent let alone homeomorphic.

Remark: You may be able to convince yourself that M1 is the 3-manifold S2 × S1.
Hatcher’s Proposition 1.12 then quickly gives π1(S

2 × S1) ≈ Z. What is more difficult
to see is that M2 is in fact the 3-sphere S3. Proposition 1.14 tells us that π1(S

3) = 0.
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