The Geometric Nature of the Fundamental Lemma

David Nadler
Northwestern University

Current Events Bulletin
2011 Joint Mathematics Meetings
New Orleans, LA
The Fundamental Lemma, first appearing in lectures of 1979, “is a precise and purely combinatorial statement that I thought must therefore of necessity yield to a straightforward analysis. This has turned out differently than I foresaw.”
A long strange trip

The Fundamental Lemma, first appearing in lectures of 1979, “is a precise and purely combinatorial statement that I thought must therefore of necessity yield to a straightforward analysis. This has turned out differently than I foresaw.”

After decades of deep contributions by many mathematicians, Ngô Bao Châu completed a proof in 2008 which ranked seventh on *Time* magazine’s Top 10 Scientific Discoveries of 2009 list.
The Fundamental Lemma, first appearing in lectures of 1979, “is a precise and purely combinatorial statement that I thought must therefore of necessity yield to a straightforward analysis. This has turned out differently than I foresaw.”

After decades of deep contributions by many mathematicians, Ngô Bao Châu completed a proof in 2008 which ranked seventh on *Time* magazine’s Top 10 Scientific Discoveries of 2009 list.

Teleportation was eighth.
A difficult task
To understand the **Fundamental Lemma**, we must study **endoscopy**.
A difficult task

To understand the **Fundamental Lemma**, we must study **endoscopy**. To understand **endoscopy**, we must study **Langlands functoriality**.
A difficult task

To understand the **Fundamental Lemma**, we must study **endoscopy**.

To understand **endoscopy**, we must study **Langlands functoriality**.

To understand **functoriality**, we must study **Langlands reciprocity**...
Linearization of subspaces

Let X be a measure space.

Subspaces $Y \subset X \mapsto$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \mapsto$ G-invariant distributions $Y(\varphi) = \int_Y \varphi$
Let X be a measure space.

Subspaces $Y \subset X$ correspond to integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X$ correspond to G-invariant distributions $Y(\varphi) = \int_Y \varphi$
Linearization of subspaces

Let X be a measure space.

Subspaces $Y \subset X \leadsto$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \leadsto G$-invariant distributions $Y(\varphi) = \int_Y \varphi$
Linearization of subspaces

Let X be a measure space.

subspaces $Y \subset X \mapsto$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \mapsto G$-invariant distributions $Y(\varphi) = \int_Y \varphi$
Let X be a measure space.

subspaces $Y \subset X \leadsto$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \leadsto$ G-invariant distributions $Y(\varphi) = \int_Y \varphi$
Let X be a measure space.

subspaces $Y \subset X \rightsquigarrow$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \rightsquigarrow G$-invariant distributions $Y(\varphi) = \int_Y \varphi$
Linearization of subspaces

Let X be a measure space.

Subspaces $Y \subset X \leadsto$ integral distributions $Y(\varphi) = \int_Y \varphi$

Now can add $Y_1 + Y_2$ and scale cY subspaces.

Suppose symmetry group G acts on X preserving measure.

G-orbits $Y \subset X \leadsto$ G-invariant distributions $Y(\varphi) = \int_Y \varphi$
Now consider \textit{group} G with a conjugation invariant measure.

Importance of linearization of conjugacy classes:

characters of G-representations \rightsquigarrow G-invariant distributions

Given G-representation V, can form distributional character:

$$
\chi_V(\varphi) = \int_G \varphi(g) \text{Tr}_V(g) \, dg
$$

(ignoring analytic technical difficulties).
Now consider group G with a conjugation invariant measure.

Importance of linearization of conjugacy classes:

characters of G-representations $\rightsquigarrow G$-invariant distributions

Given G-representation V, can form distributional character:

$$\chi_V(\varphi) = \int_G \varphi(g) \text{Tr}_V(g) dg$$

(ignoring analytic technical difficulties).
Now consider group G with a conjugation invariant measure.

Importance of linearization of conjugacy classes:

characters of G-representations $\rightsquigarrow G$-invariant distributions

Given G-representation V, can form distributional character:

$$\chi_V(\varphi) = \int_G \varphi(g) \text{Tr}_V(g) dg$$

(ignoring analytic technical difficulties).
Example: Finite groups

Specialize to finite group G. Then

$$G$$-invariant distributions $= \text{class functions}

\textbf{Theorem}

Characters χ_V of irreducible G-representations V form basis for class functions. Rescaled characters $\hat{\chi}_V = \chi_V / \dim V$ idempotents with respect to convolution $\hat{\chi}_V * \hat{\chi}_V = \hat{\chi}_V$.

\textbf{Interpretation}

Class functions $= \text{functions on space of irreducible representations.}$
Rescaled characters $\hat{\chi}_V$ are characteristic functions of points.
Example: Finite groups

Specialize to **finite group** G. Then

$$G$$-invariant distributions $= \text{class functions}$

Theorem

Characters χ_V of irreducible G-representations V form basis for class functions. Rescaled characters $\hat{\chi}_V = \chi_V / \dim V$ idempotents with respect to convolution $\hat{\chi}_V \ast \hat{\chi}_V = \hat{\chi}_V$.

Interpretation

Class functions $= \text{functions on space of irreducible representations.}$

Rescaled characters $\hat{\chi}_V$ are characteristic functions of points.
Example: Finite groups

Specialize to finite group G. Then

$$G\text{-invariant distributions} = \text{class functions}$$

Theorem

Characters χ_V of irreducible G-representations V form basis for class functions. *Rescaled characters* $\hat{\chi}_V = \chi_V / \dim V$ *idempotents with respect to convolution* $\hat{\chi}_V \ast \hat{\chi}_V = \hat{\chi}_V$.

Interpretation

Class functions = functions on space of irreducible representations. *Rescaled characters* $\hat{\chi}_V$ are characteristic functions of points.
Example: Finite groups

Specialize to finite group G. Then

$$G\text{-invariant distributions} = \text{class functions}$$

Theorem

Characters χ_V of irreducible G-representations V form basis for class functions. Rescaled characters $\hat{\chi}_V = \chi_V / \text{dim } V$ idempotents with respect to convolution $\hat{\chi}_V \ast \hat{\chi}_V = \hat{\chi}_V$.

Interpretation

Class functions = functions on space of irreducible representations. Rescaled characters $\hat{\chi}_V$ are characteristic functions of points.
It is difficult to construct representations.

We have trivial representation Tr and method of induction.

Given group G, and subgroup $\Gamma \subset G$, form “unitary induction”

$$\text{Ind}_{\Gamma}^G(\text{Tr}) = L^2(G/\Gamma)$$

Output: character χ_{Γ}^G of induced representation $\text{Ind}_{\Gamma}^G(\text{Tr})$.

Induced representations
Induced representations

It is difficult to construct representations.

We have trivial representation Tr and method of induction.

Given group G, and subgroup $\Gamma \subset G$, form “unitary induction”

$$\text{Ind}^G_{\Gamma}(\text{Tr}) = L^2(G/\Gamma)$$

Output: character χ^G_{Γ} of induced representation $\text{Ind}^G_{\Gamma}(\text{Tr})$.
It is difficult to construct representations.

We have trivial representation Tr and method of induction.

Given group G, and subgroup $\Gamma \subset G$, form “unitary induction”

$$\text{Ind}_\Gamma^G(\text{Tr}) = L^2(G/\Gamma)$$

Output: character χ_{Γ}^G of induced representation $\text{Ind}_\Gamma^G(\text{Tr})$.
Induced representations

It is difficult to construct representations.

We have trivial representation Tr and method of induction.

Given group G, and subgroup $\Gamma \subset G$, form “unitary induction”

$$\text{Ind}^G_\Gamma(\text{Tr}) = \mathcal{L}^2(G/\Gamma)$$

Output: character χ^G_Γ of induced representation $\text{Ind}^G_\Gamma(\text{Tr})$.
Frobenius Character Formula

G finite group, $\Gamma \subset G$ subgroup.

Character of induced representation $L^2(G/\Gamma)$

$$\chi^G_\Gamma(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_\gamma O_\gamma(\varphi)$$

Volumes of quotients of centralizers

$$a_\gamma = |\Gamma_\gamma \backslash G_\gamma|$$

Integrals over conjugacy classes

$$O_\gamma(\varphi) = \int_{[\gamma]} \varphi = \sum_{x \in G_\gamma \backslash G} \varphi(x^{-1} \gamma x)$$

Ferdinand Georg Frobenius
1849–1917
Frobenius Character Formula

G finite group, $\Gamma \subset G$ subgroup.

Character of induced representation $L^2(G/\Gamma)$

$$\chi^G_\Gamma(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} \mathcal{O}_\gamma(\varphi)$$

Volumes of quotients of centralizers

$$a_{\gamma} = |\Gamma_{\gamma} \setminus G_{\gamma}|$$

Integrals over conjugacy classes

$$\mathcal{O}_\gamma(\varphi) = \int_{[\gamma]} \varphi = \sum_{x \in G_{\gamma} \setminus \Gamma} \varphi(x^{-1}\gamma x)$$

Ferdinand Georg Frobenius
1849–1917
Frobenius Character Formula

Let G be a finite group, $\Gamma \subset G$ a subgroup. The character of the induced representation $L^2(G/\Gamma)$ is given by

$$\chi_G^\Gamma(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_\gamma O_\gamma(\varphi)$$

where $a_\gamma = |\Gamma \gamma \backslash G_\gamma|$ are the volumes of the quotients of centralizers. The integrals over conjugacy classes are

$$O_\gamma(\varphi) = \int_{[\gamma]} \varphi = \sum_{x \in G \gamma \backslash G} \varphi(x^{-1} \gamma x)$$

The image contains a portrait of Ferdinand Georg Frobenius, 1849–1917.
Poisson Summation Formula

R additive group, **Z** ⊂ **R** discrete subgroup.

Character of induced representation \(L^2(\mathbb{R}/\mathbb{Z}) \)

\[
\chi_{\mathbb{Z}}^\mathbb{R}(\varphi) = \sum_{n \in \mathbb{Z}} \varphi(n)
\]

(Fourier analysis provides isomorphism

\[
L^2(\mathbb{R}/\mathbb{Z}) \simeq \bigoplus_{\lambda \in \mathbb{Z}} \mathbb{C}\langle e^{2\pi i \lambda} \rangle
\]

Hence identification of characters

\[
\sum_{n \in \mathbb{Z}} \varphi(n) = \sum_{\lambda \in \mathbb{Z}} \hat{\varphi}(\lambda).
\]
Poisson Summation Formula

\(\mathbb{R} \) additive group, \(\mathbb{Z} \subset \mathbb{R} \) discrete subgroup.

Character of induced representation \(L^2(\mathbb{R}/\mathbb{Z}) \)

\[
\chi_{\mathbb{Z}}(\varphi) = \sum_{n \in \mathbb{Z}} \varphi(n)
\]

(Fourier analysis provides isomorphism)

\[
L^2(\mathbb{R}/\mathbb{Z}) \simeq \bigoplus_{\lambda \in \mathbb{Z}} \mathbb{C}<e^{2\pi i \lambda}>
\]

Hence identification of characters

\[
\sum_{n \in \mathbb{Z}} \varphi(n) = \sum_{\lambda \in \mathbb{Z}} \hat{\varphi}(\lambda).
\]

Siméon Denis Poisson
1781–1840
Poisson Summation Formula

\(\mathbb{R} \) additive group, \(\mathbb{Z} \subset \mathbb{R} \) discrete subgroup.

Character of induced representation \(L^2(\mathbb{R}/\mathbb{Z}) \)

\[
\chi_{\mathbb{Z}}^\mathbb{R}(\varphi) = \sum_{n \in \mathbb{Z}} \varphi(n)
\]

Fourier analysis provides isomorphism

\[
L^2(\mathbb{R}/\mathbb{Z}) \simeq \bigoplus_{\lambda \in \mathbb{Z}} \mathbb{C}\langle e^{2\pi i \lambda} \rangle
\]

Hence identification of characters

\[
\sum_{n \in \mathbb{Z}} \varphi(n) = \sum_{\lambda \in \mathbb{Z}} \hat{\varphi}(\lambda).
\]
Arthur-Selberg Trace Formula

\(\mathbb{G} \) reductive algebraic group over number field \(F \).
Think \(\mathbb{G} = GL(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical “Laurent series expansions” of elements in the form of \(p \)-adic and real numbers.

Then \(G = \mathbb{G}(\mathbb{A}_F) \) is a locally compact group, and \(\Gamma = \mathbb{G}(F) \subset \mathbb{G}(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi^G_G(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} \mathcal{O}_{\gamma}(\varphi) + \cdots
\]

Upshot: character involves integrals over conjugacy classes in real and \(p \)-adic Lie groups.
Arthur-Selberg Trace Formula

\(G \) reductive algebraic group over number field \(F \). Think \(G = GL(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical “Laurent series expansions” of elements in the form of \(p \)-adic and real numbers.

Then \(G = G(\mathbb{A}_F) \) is a locally compact group, and \(\Gamma = G(F) \subset G(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi^G_\Gamma(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_\gamma O_\gamma(\varphi) + \cdots
\]

Upshot: character involves integrals over conjugacy classes in real and \(p \)-adic Lie groups.
Arthur-Selberg Trace Formula

\(\mathbf{G} \) reductive algebraic group over number field \(F \). Think \(\mathbf{G} = \text{GL}(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical “Laurent series expansions” of elements in the form of \(p \)-adic and real numbers.

Then \(G = \mathbf{G}(\mathbb{A}_F) \) is a locally compact group, and \(\Gamma = \mathbf{G}(F) \subset \mathbf{G}(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi^G_{\Gamma}(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} O_{\gamma}(\varphi) + \cdots
\]

Upshot: character involves integrals over conjugacy classes in real and \(p \)-adic Lie groups.
Arthur-Selberg Trace Formula

\[G \text{ reductive algebraic group over number field } F. \]

Think \(G = GL(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical

“Laurent series expansions” of elements in the

form of \(p \)-adic and real numbers.

Then \(G = G(\mathbb{A}_F) \) is a locally compact group, and \(\Gamma = G(F) \subset G(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi^G_{\Gamma}(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} \mathcal{O}_{\gamma}(\varphi) + \cdots
\]

Upshot: character involves integrals over conjugacy classes in real and \(p \)-adic Lie groups.
Arthur-Selberg Trace Formula

\(\mathbb{G} \) reductive algebraic group over number field \(F \).
Think \(\mathbb{G} = GL(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical
“Laurent series expansions” of elements in the
form of \(p \)-adic and real numbers.

Then \(G = \mathbb{G}(\mathbb{A}_F) \) is a locally compact group,
and \(\Gamma = \mathbb{G}(F) \subset \mathbb{G}(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi_{\Gamma}^G(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} \mathcal{O}_{\gamma}(\varphi) + \cdots
\]

Upshot: character involves integrals over
conjugacy classes in real and \(p \)-adic Lie groups.
Arthur-Selberg Trace Formula

\(\mathbb{G} \) reductive algebraic group over number field \(F \).

Think \(\mathbb{G} = GL(n) \) and \(F = \mathbb{Q} \).

\(\mathbb{A}_F \) adèles of \(F \) of all hypothetical “Laurent series expansions” of elements in the form of \(p \)-adic and real numbers.

Then \(G = \mathbb{G}(\mathbb{A}_F) \) is a locally compact group, and \(\Gamma = \mathbb{G}(F) \subset \mathbb{G}(\mathbb{A}_F) \) is a discrete subgroup.

Character of induced representation \(L^2(G/\Gamma) \)

\[
\chi_{\Gamma}^G(\varphi) = \sum_{\gamma \in \Gamma/\Gamma} a_{\gamma} \mathcal{O}_\gamma(\varphi) + \cdots
\]

Upshot: character involves integrals over conjugacy classes in real and \(p \)-adic Lie groups.
For simplicity, let’s consider the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$.

Three types of orbits under conjugation:
- hyperbolic: $\det < 0$.
- nilpotent: $\det = 0$.
- elliptic: $\det > 0$.

We will focus on the two elliptic orbits $\mathcal{O}_{A_+}, \mathcal{O}_{A_-} \subset \mathfrak{s}(2, \mathbb{R})$ through the matrices

\[
A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]
For simplicity, let’s consider the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$.

Three types of orbits under conjugation:

- **hyperbolic**: $\det < 0$.
- **nilpotent**: $\det = 0$.
- **elliptic**: $\det > 0$.

We will focus on the two elliptic orbits $\mathcal{O}_{A^+}, \mathcal{O}_{A^-} \subset \mathfrak{s}(2, \mathbb{R})$ through the matrices

$$A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
For simplicity, let’s consider the Lie algebra $\mathfrak{sl}(2, \mathbb{R})$.

Three types of orbits under conjugation:

- **hyperbolic**: $\det < 0$.
- **nilpotent**: $\det = 0$.
- **elliptic**: $\det > 0$.

We will focus on the two elliptic orbits $\mathcal{O}_{A+}, \mathcal{O}_{A-} \subset \mathfrak{s}(2, \mathbb{R})$ through the matrices

$$A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
Over the complex numbers \mathbb{C}, the matrices

$$ A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} $$

are both conjugate to the matrix

$$ A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \in \mathfrak{sl}(2, \mathbb{C}). $$

One says that A_+ and A_- are stably conjugate.
Stable conjugacy

Over the complex numbers \mathbb{C}, the matrices

$$A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

are both conjugate to the matrix

$$A = \begin{bmatrix} i & 0 \\ 0 & -i \end{bmatrix} \in \mathfrak{sl}(2, \mathbb{C}).$$

One says that A_+ and A_- are stably conjugate.
Invariant polynomials

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

Said another way, the two elliptic orbits $\mathcal{O}_{A+}, \mathcal{O}_{A-} \subset \mathfrak{s}(2, \mathbb{R})$ coalesce into a single conjugacy class $\mathcal{O}_A \subset \mathfrak{s}(2, \mathbb{C})$ cut out by the invariant polynomial $\det = 1$.
Invariant polynomials

Said another way, the two elliptic orbits $\mathcal{O}_{A^+}, \mathcal{O}_{A^-} \subset \mathfrak{s}(2, \mathbb{R})$ coalesce into a single conjugacy class $\mathcal{O}_A \subset \mathfrak{s}(2, \mathbb{C})$ cut out by the invariant polynomial $\det = 1$

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$. stable conjugacy classes \leftrightarrow invariant polynomials
Linearization of adjoint orbits

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

Consider the distributions given by integrating over the elliptic orbits

$$O_{A^+}(\varphi) = \int_{O_{A^+}} \varphi \quad O_{A^-}(\varphi) = \int_{O_{A^-}} \varphi$$

with respect to an invariant measure.
The distributions $\mathcal{O}_{A+}, \mathcal{O}_{A-}$ span a two-dimensional complex vector space. It admits the alternative basis

$$\mathcal{O}_{st} = \mathcal{O}_{A+} + \mathcal{O}_{A-}$$
$$\mathcal{O}_{tw} = \mathcal{O}_{A+} - \mathcal{O}_{A-}$$

Here st stands for stable and tw stands for twisted.

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

Alternative basis
Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \simeq \mathbb{R}^3$.

The distributions O_{A+}, O_{A-} span a two-dimensional complex vector space. It admits the alternative basis

$$O_{st} = O_{A+} + O_{A-}$$
$$O_{tw} = O_{A+} - O_{A-}$$

Here st stands for stable and tw stands for twisted.
Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

The distributions $\mathcal{O}_{A+}, \mathcal{O}_{A-}$ span a two-dimensional complex vector space. It admits the alternative basis

$$\mathcal{O}_{st} = \mathcal{O}_{A+} + \mathcal{O}_{A-}$$

$$\mathcal{O}_{tw} = \mathcal{O}_{A+} - \mathcal{O}_{A-}$$

Here st stands for stable and tw stands for twisted.
Stable distributions

Stable distribution

\[\mathcal{O}_{st} = \mathcal{O}_{A_+} + \mathcal{O}_{A_-} \]

is integral over union of orbits

\[\mathcal{O}_{A_+} \sqcup \mathcal{O}_{A_-}. \]

Algebraic variety defined by invariant polynomial

\[\det = 1. \]

Stable distribution is object of

algebraic geometry (finite mathematics)

rather than harmonic analysis (continuous mathematics).
Stable distributions

Stable distribution

\[O_{st} = O_{A+} + O_{A-} \]

is integral over union of orbits

\[O_{A+} \sqcup O_{A-} \].

Algebraic variety defined by invariant polynomial

\[\text{det} = 1. \]

Stable distribution is object of

algebraic geometry (finite mathematics)

rather than harmonic analysis (continuous mathematics).
Stable distributions

Stable distribution

\[O_{st} = O_{A_+} + O_{A_-} \]

is integral over union of orbits

\[O_{A_+} \sqcup O_{A_-}. \]

Algebraic variety defined by invariant polynomial

\[\text{det} = 1. \]

Stable distribution is object of

algebraic geometry (finite mathematics)

rather than harmonic analysis (continuous mathematics).
Twisted distributions

What to do with twisted distribution

\[\mathcal{O}_{tw} = \mathcal{O}_{A_+} - \mathcal{O}_{A_-} \]

Distinguishes between \(\mathcal{O}_{A_+} \) and \(\mathcal{O}_{A_-} \)

though no invariant polynomial separates them.

Twisted distribution appears to be noncanonical: exchanging terms

\[\mathcal{O}_{A_+} \leftrightarrow \mathcal{O}_{A_-} \]

induces sign change

\[\mathcal{O}_{tw} \leftrightarrow -\mathcal{O}_{tw} \]
Twisted distributions

What to do with twisted distribution

\[O_{tw} = O_{A+} - O_{A-} ? \]

Distinguishes between

\[O_{A+} \text{ and } O_{A-} \]

though no invariant polynomial separates them.

Twisted distribution appears to be noncanonical: exchanging terms

\[O_{A+} \leftrightarrow O_{A-} \]

induces sign change

\[O_{tw} \leftrightarrow -O_{tw}. \]
Twisted distributions

What to do with twisted distribution

\[O_{tw} = O_{A+} - O_{A-} \]

Distinguishes between

\[O_{A+} \text{ and } O_{A-} \]

though no invariant polynomial separates them.

Twisted distribution appears to be noncanonical: exchanging terms

\[O_{A+} \leftrightarrow O_{A-} \]

induces sign change

\[O_{tw} \leftrightarrow -O_{tw} \]
Therein lies our salvation

Twisted distribution is integral over union of orbits

\[O_{A_+} \sqcup O_{A_-} \]

against nontrivial character

\[\kappa(+) = 1 \quad \kappa(–) = -1 \]
Therein lies our salvation

Twisted distribution is integral over union of orbits

\[O_{A_+} \sqcup O_{A_-} \]

against nontrivial character

\[\kappa(+) = 1 \quad \kappa(−) = −1 \]
Therein lies our salvation

Twisted distribution is integral over union of orbits

\[\mathcal{O}_{A_+} \sqcup \mathcal{O}_{A_-} \]

against nontrivial character

\[\kappa(+) = 1 \quad \kappa(-) = -1 \]
Interpretation via Fourier analysis

Orbits of $SL(2, \mathbb{R})$ acting on its Lie algebra $\mathfrak{sl}(2, \mathbb{R}) \cong \mathbb{R}^3$.

Alternative basis

$$\mathcal{O}_{st} = \mathcal{O}_{A+} + \mathcal{O}_{A-}$$

$$\mathcal{O}_{tw} = \mathcal{O}_{A+} - \mathcal{O}_{A-}$$

results from *Fourier analysis* on set of orbits

$$\{ \mathcal{O}_{A+}, \mathcal{O}_{A-} \}$$
What is the Fundamental Lemma all about?

Basic idea

Langlands's theory of endoscopy, and the Fundamental Lemma at its heart, confirms that one can systematically express twisted distributions in terms of stable distributions or nonconstant Fourier modes in terms of constant Fourier modes.
What is the Fundamental Lemma all about?

Basic idea

Langlands’s theory of *endoscopy*, and the *Fundamental Lemma* at its heart, confirms that one can systematically express

twisted distributions *in terms of* *stable distributions*
What is the Fundamental Lemma all about?

Basic idea

Langlands’s theory of endoscopy, and the Fundamental Lemma at its heart, confirms that one can systematically express

twisted distributions in terms of stable distributions

nonconstant Fourier modes in terms of constant Fourier modes
Example continued

Endoscopy relates twisted distribution

\[\mathcal{O}_{tw} = \mathcal{O}_{A+} - \mathcal{O}_{A-} \]

to stable distribution on Lie algebra \(\mathfrak{so}(2, \mathbb{R}) \) \(\cong \mathbb{R} \) of subgroup \(\text{SO}(2, \mathbb{R}) \subset \text{SL}(2, \mathbb{R}) \)

stabilizing matrices

\[A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \]

Outside of bookkeeping, this is empty of content since \(\text{SO}(2, \mathbb{R}) \) is abelian, and so its orbits in \(\mathfrak{so}(2, \mathbb{R}) \) are single points.
Example continued

Endoscopy relates twisted distribution

\[O_{tw} = O_{A+} - O_{A-} \]

to stable distribution on Lie algebra \(\mathfrak{so}(2, \mathbb{R}) \cong \mathbb{R} \) of subgroup \(\text{SO}(2, \mathbb{R}) \subset \text{SL}(2, \mathbb{R}) \)

stabilizing matrices

\[
A_+ = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad A_- = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}
\]

Outside of bookkeeping, this is empty of content since \(\text{SO}(2, \mathbb{R}) \) is abelian, and so its orbits in \(\mathfrak{so}(2, \mathbb{R}) \) are single points.
Why is the Fundamental Lemma difficult?

General theory of endoscopy is deep and elaborate.

Key challenge

Extraordinary difficulty of the Fundamental Lemma, and also its mystical power, emanates from fact that sought-after stable distributions live on so-called endoscopic groups H with little apparent geometric relation to original group G.
Why is the Fundamental Lemma difficult?

General theory of **endoscopy** is deep and elaborate.

Key challenge

*Extraordinary difficulty of the *Fundamental Lemma*, and also its mystical power, emanates from fact that sought-after stable distributions live on so-called *endoscopic groups* \(H \) with little apparent geometric relation to *original group* \(G \).*
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example
Consider the symplectic group $G = Sp(2n)$.
The special orthogonal group $H = SO(2n)$ is not a subgroup.
But $H^\vee = SO(2n)$ is a subgroup of $G^\vee = SO(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $Sp(2n) \rightsquigarrow$ stable distributions on $SO(2n)$
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example
Consider the symplectic group $G = Sp(2n)$.

The special orthogonal group $H = SO(2n)$ is not a subgroup.

But $H^\vee = SO(2n)$ is a subgroup of $G^\vee = SO(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $Sp(2n) \leadsto$ stable distributions on $SO(2n)$
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example

Consider the symplectic group $G = Sp(2n)$.

The special orthogonal group $H = SO(2n)$ is not a subgroup.

But $H^\vee = SO(2n)$ is a subgroup of $G^\vee = SO(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $Sp(2n) \leadsto$ stable distributions on $SO(2n)$
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example
Consider the symplectic group $G = Sp(2n)$.
The special orthogonal group $H = SO(2n)$ is not a subgroup.
But $H^\vee = SO(2n)$ is a subgroup of $G^\vee = SO(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $Sp(2n) \rightsquigarrow$ stable distributions on $SO(2n)$
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example

Consider the symplectic group $G = \text{Sp}(2n)$.

The special orthogonal group $H = \text{SO}(2n)$ is not a subgroup.

But $H^\vee = \text{SO}(2n)$ is a subgroup of $G^\vee = \text{SO}(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $\text{Sp}(2n) \rightsquigarrow$ stable distributions on $\text{SO}(2n)$
Endoscopic groups

To find relation between group G and endoscopic group H, one must pass to Langlands dual groups

“noncommutative Pontryagin dual group” of “geometric characters”

There one finds H^\vee is naturally subgroup of G^\vee.

Example

Consider the symplectic group $G = Sp(2n)$.

The special orthogonal group $H = SO(2n)$ is not a subgroup.

But $H^\vee = SO(2n)$ is a subgroup of $G^\vee = SO(2n + 1)$.

Endoscopy gives precise relationship

twisted distributions on $Sp(2n)$ \rightsquigarrow stable distributions on $SO(2n)$
Low rank example

Foreground: roots of the group \(G = \text{Sp}(4) \) with roots of the endoscopic group \(H = \text{SO}(4) \) highlighted.

Background: roots of the Langlands dual group \(G^\vee = \text{SO}(5) \) with roots of the subgroup \(H^\vee = \text{SO}(4) \) highlighted.
Foreground: roots of the group $G = Sp(4)$ with roots of the endoscopic group $H = SO(4)$ highlighted.

Background: roots of the Langlands dual group $G^\vee = SO(5)$ with roots of the subgroup $H^\vee = SO(4)$ highlighted.
Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and harmonic analysis: p-adic and real Lie groups (algebraic groups over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and Shelstad: “if it were not that [transfer factors] had been proved to exist over the real field, it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness of endoscopy.”
Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and harmonic analysis: p-adic and real Lie groups (algebraic groups over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and Shelstad: “if it were not that [transfer factors] had been proved to exist over the real field, it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness of endoscopy.”
Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and harmonic analysis: p-adic and real Lie groups (algebraic groups over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and Shelstad: “if it were not that [transfer factors] had been proved to exist over the real field, it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness of endoscopy.”
Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and harmonic analysis: p-adic and real Lie groups (algebraic groups over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and Shelstad: “if it were not that [transfer factors] had been proved to exist over the real field, it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness of endoscopy.”
Real versus p-adic Lie groups

Detailed conjectures organizing the intricacies of the transfer of distributions first appear in Langlands’s joint work with Shelstad.

General setting needed for applications to number theory and harmonic analysis: p-adic and real Lie groups (algebraic groups over local fields).

For real Lie groups, Shelstad rapidly proved the conjectures.

What became known as the Fundamental Lemma is the most basic conjecture for p-adic groups.

Useful to have picture of real Lie groups in mind. Langlands and Shelstad: “if it were not that [transfer factors] had been proved to exist over the real field, it would have been difficult to maintain confidence in the possibility of transfer or in the usefulness of endoscopy.”
From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic
- Number field F
- Rational numbers \mathbb{Q}
- p-adic field
- p-adic group

One-dimensional Geometry
- Smooth projective curve X
- Projective line \mathbb{P}^1
- Formal disk D
- Loop group LG

Theorem (Waldspurger)
To prove Fundamental Lemma, it suffices to prove its analogue in the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent
From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic
- Number field F
- Rational numbers \mathbb{Q}
- p-adic field
- p-adic group

One-dimensional Geometry
- Smooth projective curve X
- Projective line \mathbb{P}^1
- Formal disk D
- Loop group LG

Theorem (Waldspurger)
To prove Fundamental Lemma, it suffices to prove its analogue in the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent
From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

- Number field F
- Rational numbers \mathbb{Q}
- p-adic field
- p-adic group

One-dimensional Geometry

- Smooth projective curve X
- Projective line \mathbb{P}^1
- Formal disk D
- Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent
From p-adic groups to loop groups

Dictionary between arithmetic and geometry.

One-dimensional Arithmetic

- Number field F
- Rational numbers \mathbb{Q}
- p-adic field
- p-adic group

One-dimensional Geometry

- Smooth projective curve X
- Projective line \mathbb{P}^1
- Formal disk D
- Loop group LG

Theorem (Waldspurger)

To prove Fundamental Lemma, it suffices to prove its analogue in the geometric setting.

Later proof by Cluckers, Hales, and Loeser via model theory:

local arithmetic and geometry are equivalent
Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are equivalent to counting points in subvarieties of Grassmannians.

Definition

Let LG be loop group. Let $L_+G \subset LG$ be subgroup of arcs. Loop Grassmannian Gr_G is homogenous space LG/L_+G.

Why Grassmannian? ∞/2-dim subspaces of ∞-dim vector space.
Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are equivalent to counting points in subvarieties of Grassmannians.

Definition
Let LG be loop group. Let $L_+ G \subset LG$ be subgroup of arcs.

Loop Grassmannian Gr_G is homogenous space LG/L_+G.

Why Grassmannian? ∞/2-dim subspaces of ∞-dim vector space.
Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are equivalent to counting points in subvarieties of Grassmannians.

Definition
Let LG be loop group. Let $L_+ G \subset LG$ be subgroup of arcs. Loop Grassmannian Gr_G is homogenous space $LG/L_+ G$.

Why Grassmannian? ∞/2-dim subspaces of ∞-dim vector space.
Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are equivalent to counting points in subvarieties of Grassmannians.

Definition
Let LG be loop group. Let $L_+G \subset LG$ be subgroup of arcs. **Loop Grassmannian** Gr_G is homogenous space LG/L_+G.

Why Grassmannian? $\infty/2$-dim subspaces of ∞-dim vector space.
Loop Grassmannians

Orbital integrals of Fundamental Lemma in geometric setting are equivalent to counting points in subvarieties of Grassmannians.

Definition
Let LG be loop group. Let $L_+G \subset LG$ be subgroup of arcs. **Loop Grassmannian** Gr_G is homogenous space LG/L_+G.

Why Grassmannian? ∞/2-dim subspaces of ∞-dim vector space.

Geometric cousin of affine building.
Affine Springer fibers

Now the subvarieties...

Definition

Let ξ be element of Lie algebra of LG.

Affine Springer fiber $X_\xi \subset Gr_G$ is fixed-point locus of ξ.
Now the **subvarieties**...

Definition

Let ξ be element of Lie algebra of LG.

Affine Springer fiber $X_\xi \subset Gr_G$ is fixed-point locus of ξ.
Affine Springer fibers

Now the subvarieties...

Definition

Let ξ be element of Lie algebra of LG.

Affine Springer fiber $X_\xi \subset Gr_G$ is fixed-point locus of ξ.
Affine Springer fibers

Now the subvarieties...

Definition

Let ξ be element of Lie algebra of LG.

Affine Springer fiber $X_\xi \subset Gr_G$ is fixed-point locus of ξ.

Example for ξ diagonal with distinct eigenvalues.
Basic structure of affine Springer fibers

- X_ξ is finite-dimensional increasing union of projective varieties.
- X_ξ/Λ_ξ quotient by symmetry lattice is projective variety.
Basic structure of affine Springer fibers

- X_ξ is finite-dimensional increasing union of projective varieties.
- X_ξ/Λ_ξ quotient by symmetry lattice is projective variety.
Basic structure of affine Springer fibers

- X_ξ is finite-dimensional increasing union of projective varieties.
- X_ξ/Λ_ξ quotient by symmetry lattice is projective variety.
From point counts to cohomology

Trace formula: count points in algebraic variety by calculating traces of Galois symmetries acting on topological cohomology.

Grothendieck 1928–

Lefschetz 1884–1972

Now can stand on the shoulders of giants: Kazhdan-Lusztig, Goresky-MacPherson, Beilinson-Bernstein-Deligne-Gabber,…

Challenge: cohomology of affine Springer fibers quantifiably too complicated to calculate in any combinatorially explicit form.
From point counts to cohomology

Trace formula: count points in algebraic variety by calculating traces of Galois symmetries acting on topological cohomology.

Now can stand on the shoulders of giants: Kazhdan-Lusztig, Goresky-MacPherson, Beilinson-Bernstein-Deligne-Gabber,...

Challenge: cohomology of affine Springer fibers quantifiably too complicated to calculate in any combinatorially explicit form.
From point counts to cohomology

Trace formula: count points in algebraic variety by calculating traces of Galois symmetries acting on topological cohomology.

Now can stand on the shoulders of giants: Kazhdan-Lusztig, Goresky-MacPherson, Beilinson-Bernstein-Deligne-Gabber,…

Challenge: cohomology of affine Springer fibers quantifiably too complicated to calculate in any combinatorially explicit form.
Trace formula: count points in algebraic variety by calculating traces of Galois symmetries acting on topological cohomology.

Now can stand on the shoulders of giants: Kazhdan-Lusztig, Goresky-MacPherson, Beilinson-Bernstein-Deligne-Gabber,…

Challenge: cohomology of affine Springer fibers quantifiably too complicated to calculate in any combinatorially explicit form.
Problem: cohomology of fixed-points of vector fields on flag varieties.

Trivial case: when vector field is generic, for example sum of linearly independent commuting vector fields.

General solution: “analytically continue” solution from generic locus to all vector fields.
Problem: cohomology of fixed-points of vector fields on flag varieties.

Trivial case: when vector field is generic, for example sum of linearly independent commuting vector fields.

General solution: “analytically continue” solution from generic locus to all vector fields.
Problem: cohomology of fixed-points of vector fields on flag varieties.

Trivial case: when vector field is generic, for example sum of linearly independent commuting vector fields.

General solution: “analytically continue” solution from generic locus to all vector fields.
Problem: cohomology of fixed-points of vector fields on flag varieties.

Trivial case: when vector field is generic, for example sum of linearly independent commuting vector fields.

General solution: “analytically continue” solution from generic locus to all vector fields.
Compactified Jacobians

Beautiful insight

Affine Springer fibers modulo natural symmetries parametrize generalized line bundles on curves.

Deformations to simpler curves provide deformations to simpler affine Springer fibers.

Striking consequence

Fundamental Lemma for unitary groups!
Beautiful insight

Affine Springer fibers modulo natural symmetries parametrize generalized line bundles on curves.

Deformations to simpler curves provide deformations to simpler affine Springer fibers.

Striking consequence

Fundamental Lemma for unitary groups!
Compactified Jacobians

Beautiful insight

Affine Springer fibers modulo natural symmetries parametrize generalized line bundles on curves.

Deformations to simpler curves provide deformations to simpler affine Springer fibers.

Striking consequence

Fundamental Lemma for unitary groups!
Meanwhile in a galaxy far, far away…
Meanwhile in a galaxy far, far away...

Hitchin fibration

X smooth projective curve (Riemann surface).

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $\mathcal{A}_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \to \mathcal{A}_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.

Nigel Hitchin 1946–
Hitchin fibers

Meanwhile in a galaxy far, far away...

Hitchin fibration

X smooth projective curve (Riemann surface).

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $\mathcal{A}_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \rightarrow \mathcal{A}_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Meanwhile in a galaxy far, far away...

Hitchin fibration

X smooth projective curve (Riemann surface).

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $\mathcal{A}_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \rightarrow \mathcal{A}_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Hitchin fibers

Meanwhile in a galaxy far, far away...

Hitchin fibration

\(X \) smooth projective curve (Riemann surface).

\(\text{Hitchin moduli } \mathcal{M}_G(X) \) parametrizes \(G \)-bundle on \(X \) together with twisted endomorphism.

\(\text{Base } \mathcal{A}_G(X) \) parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system \(\mathcal{M}_G(X) \to \mathcal{A}_G(X) \) assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Hitchin fibers

Meanwhile in a galaxy far, far away...

Hitchin fibration

X smooth projective curve (Riemann surface).

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $\mathcal{A}_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \to \mathcal{A}_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Meanwhile in a galaxy far, far away...

Hitchin fibration

X smooth projective curve (Riemann surface).

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $\mathcal{A}_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \to \mathcal{A}_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Meanwhile in a galaxy far, far away...

Hitchin fibration

A *X smooth projective curve (Riemann surface).*

Hitchin moduli $\mathcal{M}_G(X)$ parametrizes G-bundle on X together with twisted endomorphism.

Base $A_G(X)$ parametrizes possible eigenvalues of twisted endomorphism (spectral curve).

Integrable system $\mathcal{M}_G(X) \rightarrow A_G(X)$ assigns characteristic polynomial of endomorphism.

Fibers parametrize generalized line bundles on spectral curves.

Hitchin fibration organizes deformations of affine Springer fibers into a proper finite-dimensional algebraic family.
Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve $X \mapsto$ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient $G/G \mapsto$ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve $X \mapsto \{\text{adjoint quotient } g/G \mapsto \text{possible eigenvalues } t/W\}$

Global curve organizes local group theory!
Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve $X \rightarrow$ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient $G/G \rightarrow$ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve $X \rightarrow \{\text{adjoint quotient } g/G \rightarrow \text{possible eigenvalues } t/W\}$

Global curve organizes local group theory!
Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

\[\text{adjoint quotient } G/G \]

Hitchin moduli space parametrizes twisted maps

\[\text{curve } X \longrightarrow \text{adjoint quotient } g/G \]

Furthermore, stable conjugacy classes involve invariant polynomials

\[\text{adjoint quotient } G/G \longrightarrow \text{possible eigenvalues } T/W \]

Hitchin fibration parametrizes twisted maps

\[\text{curve } X \longrightarrow \{ \text{adjoint quotient } g/G \longrightarrow \text{possible eigenvalues } t/W \} \]

Global curve organizes local group theory!
Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

$\text{curve } X \longrightarrow \text{adjoint quotient } g/G$

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient $G/G \longrightarrow \text{possible eigenvalues } T/W$

Hitchin fibration parametrizes twisted maps

$\text{curve } X \longrightarrow \{\text{adjoint quotient } g/G \longrightarrow \text{possible eigenvalues } t/W\}$

Global curve organizes local group theory!
Not so surprising...

Fundamental Lemma involves distributions on conjugacy classes

adjoint quotient G/G

Hitchin moduli space parametrizes twisted maps

curve $X \longrightarrow$ adjoint quotient g/G

Furthermore, stable conjugacy classes involve invariant polynomials

adjoint quotient $G/G \longrightarrow$ possible eigenvalues T/W

Hitchin fibration parametrizes twisted maps

curve $X \longrightarrow \{\text{adjoint quotient } g/G \longrightarrow \text{possible eigenvalues } t/W\}$

Global curve organizes local group theory!
Ngô’s Support Theorem

Main new technical input to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

\[f : M \to S, \text{ with } M \text{ and } S \text{ smooth.} \]

Over a Zariski open locus \(S^0 \subset S \), the fibers

\[M_s = f^{-1}(s), \quad s \in S^0 \]

are topologically equivalent curves, hence their cohomologies \(H^*(M_s) \) form a local system of vector spaces

\[\mathcal{H} \to S^0 \]

Exercise: the cohomology of any fiber can be recovered from \(\mathcal{H} \).
Ngô’s Support Theorem

Main new **technical input** to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

\[f : M \to S, \text{ with } M \text{ and } S \text{ smooth.} \]

Over a Zariski open locus \(S^0 \subset S \), the fibers

\[M_s = f^{-1}(s), \quad s \in S^0 \]

are topologically equivalent curves, hence their cohomologies \(H^\ast(M_s) \) form a local system of vector spaces

\[\mathcal{H} \to S^0 \]

Exercise: the cohomology of any fiber can be recovered from \(\mathcal{H} \).
Ngô’s Support Theorem

Main new **technical input** to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

$$f : M \to S,$$ with M and S smooth.

Over a Zariski open locus $S^0 \subset S$, the fibers

$$M_s = f^{-1}(s), \quad s \in S^0$$

are topologically equivalent curves, hence their cohomologies

$H^*(M_s)$ form a local system of vector spaces

$$\mathcal{H} \to S^0$$

Exercise: the cohomology of any fiber can be recovered from \mathcal{H}.
Ngô’s Support Theorem

Main new **technical input** to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

\[f : M \to S, \text{ with } M \text{ and } S \text{ smooth.} \]

Over a Zariski open locus \(S^0 \subset S \), the fibers

\[M_s = f^{-1}(s), \quad s \in S^0 \]

are topologically equivalent curves, hence their cohomologies \(H^*(M_s) \) form a local system of vector spaces \(\mathcal{H} \to S^0 \).

Exercise: the cohomology of any fiber can be recovered from \(\mathcal{H} \).
Ngô’s Support Theorem

Main new **technical input** to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

\[f : M \to S, \text{ with } M \text{ and } S \text{ smooth.} \]

Over a Zariski open locus \(S^0 \subset S \), the fibers

\[M_s = f^{-1}(s), \quad s \in S^0 \]

are topologically equivalent curves, hence their cohomologies \(H^*(M_s) \) form a local system of vector spaces

\[\mathcal{H} \to S^0 \]

Exercise: the cohomology of any fiber can be recovered from \(\mathcal{H} \).
Ngô’s Support Theorem

Main new technical input to proof of Fundamental Lemma. Precise description of the cohomology of the fibers of an integrable system in terms of its generic fibers.

Toy model: consider a family of irreducible curves

\[f : M \to S, \text{ with } M \text{ and } S \text{ smooth.} \]

Over a Zariski open locus \(S^0 \subset S \), the fibers

\[M_s = f^{-1}(s), \quad s \in S^0 \]

are topologically equivalent curves, hence their cohomologies \(H^*(M_s) \) form a local system of vector spaces

\[\mathcal{H} \to S^0 \]

Exercise: the cohomology of any fiber can be recovered from \(\mathcal{H} \).
Family of plane cubics

\[y^2 = x^3 + ax + b \]

singular at \((a, b) = (0, 0)\)
Thank you for listening!