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Introduction
THE primary purpose of this paper is the study of algebraic vector bundles
over an elliptic curve (defined over an algebraically closed field k). The
interest of the elliptic curve lies in the fact that it provides the first non-
trivial case, Grothendieck (6) having shown that for a rational curve every
vector bundle is a direct sum of line-bundles.

In order to provide the necessary background a certain amount of general
material, not found in the literature, has been included. This consists of a
brief discussion of 'Theorems A and B' and their relation with Universal
bundles, a little on protective bundles, and some results on reduction of
structure group. The case of vector bundles over an algebraic curve is
treated in greater detail, and more precise results are obtained. In particular
a refinement of Theorems A and B is given (Theorem 1) which seems to be
a necessary preliminary in any attempt at classification of vector bundles.
This concludes Part I of the paper.

Part II is devoted to the classification of vector bundles over an elliptic
curve. The problem is completely solved and the main result is stated in
Theorem 7. The characteristic of the field does not enter into this part of
the problem, and the results are valid in both characteristic 0 and p.

In Part III we examine the operation of the tensor product. This is most
easily expressed in terms of the ring S generated by the vector bundles
(cf. Part I, § 1). We show (Theorem 12) that $ is the tensor product of
certain sub-rings SQ and Sp (over all primes p), and the ring structure of
SQ and Sp is given by Theorems 8, 13, and 14. These results are all for
the characteristic zero case, and we make only a few isolated remarks
for the case of characteristic p.

We conclude the paper with a few brief applications of the results of
Parts II and III.

PART I
1. Generalities

Let X be an algebraic variety defined over an algebraically closed field k.
We shall suppose that X is irreducible and projective (i.e. that it can be
Proc. London Math. Soc. (3) 7 (1957)
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embedded biregularly in some projective space). We shall be concerned
with vector bundles over X, i.e. algebraic fibre bundles over X with a vector
space as fibre and the general linear group as structure group. If k is the
complex field then it has been shown by Serre (9) that the algebraic and
analytic vector bundles over X coincide. Thus we prefer to adopt the more
general approach rather than limit ourselves to the complex analytic case;
the proofs are no more difficult, except that the characteristic of k does
enter the picture later on.

If E is any vector bundle over X we shall denote by E the sheaf of germs
of regular sections of E, and by T(E) the vector space of global regular
sections of E\ thus T{E) = H°(X, E).

We denote by S'(X) the set of equivalence classes of all vector bundles
over X. We have two operations in S'(X): the direct sum 0 , and the tensor
product (g)_. Since the Krull-Schmidt theorem holds in $(X) (cf. (3)) it
follows that ${X) is a free abelian semi-group with respect to 0 . Hence
we may embed it in a free abelian group $(X). If we extend the ® operation
to <o{X) we obtain a commutative ring with unit (the trivial line-bundle).
If E is a vector bundle we denote by e the corresponding element of ^(X)
(or <o{X)), and we write e-f-e', ne, ee' instead of e©e ' , e 0 e 0 . . . 0 e
(n terms), e ® e' respectively. For any vector bundle E we have a dual
bundle E*, and so we obtain an automorphism e ->• e* of the ring <§{X).
We note the canonical isomorphism: Hom(2£, F) ^ E* <g> F. If <£" c &{X)
is any subset we shall write E e S" instead of E e e, e e $".

If L is a line-bundle over X (i.e. a vector bundle in which the fibre is of
dimension one), then L <g> L* ^ 1, where 1 denotes the trivial line-bundle.
Thus the equivalence classes of line-bundles form a group A(Z). If X is
non:singular then A(X) is canonically isomorphic with the divisor class
group of X. We denote by A(X) the subring of <o(X) generated by A(.X).
In particular we shall regard ${X) as a A(X)-module. In view of the
relation between line-bundles and divisor classes we define the relation
Lx ^ L2 to mean: there exists a regular homomorphism of L2 into Llt not
identically zero, i.e. F Hom(Z2, L±) =£ 0. Clearly Lx ^ L% if and only if
Lx ® L\ ^ 1. If X is a non-singular curve the line bundle L corresponds
to a divisor class D, and we put deg(L) = degZ). Then Lx ^ L2 implies
deg Lx ^ deg L%.

If E is an r-dimensional vector bundle over X, and if k is now the
complex field, we have Chern classes C^E) e H2i(X, C), i = 0,..., r. Follow-
ing Hirzebruch it is convenient to introduce a map t: d{X) -> H*(X, C)
defined by t(E) = eSl+eS2+...+e8'-, where the 8̂  are the formal symbols
given by

(l+8ia0(l+8aa0...(l+8ra0 = \+C1x+C2x*+...+Crx'.
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The advantage of t lies in the fact that it is a ring homomorphism. If X is
a non-singular curve then H*(X, C) is generated by 1 e H°(X, C) and an
element fi e H2(X, C) (the fundamental class) with /x2 = 0. Then

t(E) = r.l+d.ii,
where r is the dimension of the fibre and d.\i = C^(E). We can also define
d as follows: the homomorphism det: GLr(C) -> GL^C) = C* gives rise to
an induced line-bundle det(E); we put d = deg(det(2£)). Thus d is an
integer, and this definition works for any field k; we write d = deg(E). If
we denote by Si the ring of dual numbers (i.e. the ring generated by two
elements 1, [x with /x3 = 0) we see that t: ${X) -> Q> is a ring homomorphism,
valid for any ground field k.

2. Theorems A and Bf
We recall here the form of 'Theorems A and B' for vector bundles over

a projective algebraic variety (cf. (9)). Let H be the line-bundle corre-
sponding to a hyperplane section, then we put E(n) = E <g> Hn, where Hn

denotes the tensor product H <8> H <g) ... <g> H (n times). Then we have:
THEOREM A. For sufficiently large n {depending on E) the canonical homo-

morphism T(E(n)) -> E(n)x is an epimorphism for all x e X.
THEOREM B. For sufficiently large n (depending on E)

If E is such that Y(E) -> Ex is an epimorphism for all x we shall say that
E has sufficient sections. This condition is obviously equivalent to requiring
that E should be a quotient bundle of a trivial bundle. Thus Theorem A
asserts that, for sufficiently large n, E(n) is a quotient bundle of a trivial
bundle. Dually we also have that E(—n) is a sub-bundle of a trivial bundle,
for sufficiently large n.

Let V be a vector space of dimension r-\-r\ and let Gr
r\V) denote the

Grassmannian of subspaces of V of dimension r', or equivalently the Grass-
mannian of quotient spaces of V of dimension r. If we denote the trivial
bundle VxGr

r\V) also by V, we get an exact sequence of vector bundles
over G',(V): 0->W'^V-+W^0. (1)

W is r-dimensional and W r'-dimensional. Suppose now that E is an r-
dimensional vector bundle over X with sufficient sections. Putting

V = Y(E),
we obtain an exact sequence of vector bundles over X

0->E'->V^E->0. (2)
t The ideas of this section are due to J.-P. Serre.
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It is almost immediate that the map/: X -> Gr
r.(V) defined by assigning to

each x the subspace E'x of V (or equivalently the quotient space Ex of V)
is such that/~1(l) ^ (2), where/~1(1) denotes the sequence on X induced
from (1) by/. Thus E g^f-^W), E' c^f-\W).

In the usual terminology W is the 'universal bundle' over the classifying
space Gr

r.{V). However, it would seem preferable to distinguish between W
and W by calling W the universal quotient-bundle and W' the universal
sub-bundle. Theorem A, joined with the preceding remarks, then gives the
following:

(i) for sufficiently large n, E(n) is induced by a regular map/: X -» Gr(V)
from the universal quotient bundle;

(i)* for sufficiently large n, E(—n) is induced by a regular map

g:X->Gr(V)
from the universal sub-bundle.

In (i) we take V = T(E(n)) and in (i)* we take V = [V(E*(n))]*.
If E has sufficient sections there may be many different maps

/ : X -> Gr{V)

(for different spaces V) such that E ^:f~1{W). However, they can all be
obtained from the canonical one defined above (in which V = T(E))^. In
fact let g: X -» Gr( U) be such a map, then we have an epimorphism U -> E,
This induces a map U ̂  F( U) -> T(E) = V, and so U -> E may be factored
into U -> V -> E. The map g: X -» Gr(U) is then clearly describable in
terms of / : X -> #r(F) and the homomorphism U ->V.

Whether or not E has sufficient sections we always have a homomorphism
T(E) -> -£7. If r(2£) -> Ex is a monomorphism for all a; e X it follows that
r(2£) (regarded as a trivial bundle) can be identified with a sub-bundle of E.
This remark will come in useful in Parts II and III .

For future reference we shall require an elementary lemma. We define
a vector bundle E to be ample'f if it has sufficient sections and ifH9(X, E) = 0
for q > 0. Then we have

LEMMA 1. Let 0 -> E' -> E -> E" -> 0 be an exact sequence of vector bundles
on X. Then

(i) if E' and E" are ample so is E,
(ii) if E has sufficient sections so does E".

Proof, (i) Since H*{X, E') = H«(X, E") = 0 for q > 0, the exact co-

f One could adopt a stronger definition of this term by insisting that the canonical
map of X into the Grassmannian is biregular.

5388.3.7
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homology sequence gives Hq(X, E) = 0 for q > 0 and we have an exact
sequence Q _̂  p ^ ̂  p ^ _̂  p ^ ^ ^ Q

We consider the diagram
0 ̂  T(E')-> V(E)-+F(E")-+0

I I I
0 -* E'x -> Ex -> E"x ^ 0 .

Since T(#') -» ̂ , T(^") -• E"x are epimorphisms for all x e X it follows
that T{E) -> JEJ is an epimorphism for all x. Hence E is ample,

(ii) We have a diagram
v{E) -> r(E")

I I
Ex -> E"x ->0.

By hypothesis T(E) -> Ex is an epimorphism. It follows at once that
T(E") -* E"x is also an epimorphism, i.e. E" has sufficient sections.

3. The projective group
In this section k will be the field of complex numbers C, and we denote

by C* the multiplicative group of C. Let Pr = GLr(C)/C* be the projec-
tive group corresponding to GLr(C). By general results of Serre (9) two
algebraic bundles with group Pr which are analytically equivalent are also
algebraically equivalent. It is not known in general whether every analytic
bundle with group Pr is necessarily algebraic.f If X is a curve, however, we
shall see that this is in fact the case.

We consider the exact sequence of non-abelian groups:
\^C*^GLr{C)^Pr->\,

and the corresponding exact sequence of germs of analytic maps on X:
l_^C*-*GL r (C)^P r -» l .

Since C* is the centre of GLr(C), and since X is a Hausdorff spaceJ we have
an exact sequence of cohomology (cf. (4) or (5)):

Hi(X, GLr(C)) -+ H\X, Pr) -* H*(X, C*).
The exactness is to be understood in the following sense: an element of
HX(X, Pr) lies in the image of HX(X, GLr(C)) if and only if its image in
H2(X, C*) is zero. Thus if H2(X, G*) = 0 every Pr-bundle is the image of
a 6r.Lr(C)-bundle and therefore algebraic. Now we have an exact sequence
of sheaves: 0 - > Z - > C ^ C * - > 0 ,

t [Added in proof.] Recent results of Serre and Grothendieck show that there exist
analytic i^-bundles which are not algebraic.

t The Zariski topology is non-Hausdorff and so the corresponding algebraic
sequence may not (a priori) bo exact.
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where Z is the sheaf of integers and C -> G* is given by exp(27n). The
exact cohomology sequence gives

H*{X, C) -> H2(X, C*) -> H3(X, Z).
Hence we certainly have H2(X, C*) = 0 if H2{X, C) = H3{X, Z) = 0.
These conditions are satisfied notably in the following two cases:

(i) X is a curve,
(ii) X is a protective space.

Hence in these cases every analytic Pr-bundle is algebraic.
In any case the image of HX(X, GLr(C)) in HX{X, Pr) is in (1-1) corre-

spondence with the equivalence classes oiH1{X, GLr(C)) under the opera-
tion of the groiip Hl{X, C*). This is a consequence of the exact sequence
[cf. (5)]. If we turn from principal bundles with group OLr(C) to the corre-
sponding vector bundles, the operation mentioned above simply becomes
the tensor product E ® L, where L is a line-bundle (defined by an element

Thus if X is a curve a knowledge of the A-module structure of ${X)
determines completely the classification of bundles with the protective
group as structure group.

We have proved this when k is the complex field (for either analytic or
algebraic bundles). In fact it is not difficult to show that it holds for any
field Jfc.f

4. Reduction of structure group for curves
In this section we suppose that X is a non-singular curve. We then have

the following purely local result: let/: X -*• Y be a rational map of X into
a complete variety Y, then / is regular. Suppose now that E is a vector
bundle over X, and let <f> e T(E) (<f> ^ 0). Then (f> defines a rational section
of the protective bundle associated to E. By the result just mentioned this
section is necessarily regular, and so defines a sub-bundle of E of dimension
one—its cOunterimage in E. We denote this sub-bundle by [<£] and call it
the line-bundle generated by <f>. If x e X and t is a local parameter at x,
we can write <f> = tv(f>' where v > 0 and <f>'{x) ^ 0. Then [<f>]x is just the
vector space of dimension one generated by <j>'{x)\ in particular (f>(X) c [<f>],
and so 0 is a section of [</>]. We define the divisor of cf> by

divcf> = J,vxx,

and we put deg<£ = degdiv</> = T̂ vx. Thus deg0 =
If E has sufficient sections, then E' = E/[<f>] also has sufficient sections

f I am indebted to J.-P. Serre for this remark.
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(Lemma 1), and so by repeating this construction we end up with a series
of sub-bundles of E:

0 = Eo c Ex c E% c ... c Er = E,

where Li = EJE^ is a line-bundle (Ex = [<£]). Such a series will be called
a splitting of E, and we write E = (Lx,L2,...,Lr). By considering E(n)
instead of E we can always remove the restriction on E to have sufficient
sections. In fact if E(n) = (Lx,..., Lr), then E = (Lx(—n),..., Lr(—n)).

One consequence of the existence of splittings is the Riemann-Roch
theorem. In fact let

X(E) = dimH°(Z,E)-dim^1(-X:.E),

and let E = (Lx,..., Lr). Then from the exact cohomology sequences of the
splitting we find immediately:

i
. 1 = 1

On the other hand we have the Riemann-Roch theorem for a line-bundle
(or divisor) , r N -, T . ,

x(Li) = degZ^—g+1,
where g is the genus of X. Hence we obtain

x(E) = degE+r(l-g).

A splitting of E may also be viewed as a reduction of the structure group
from OLr to Ar (the triangular group with zeros below the diagonal). Such
a reduction is always possible. In fact Fr = GLr/Ar the 'flag manifold' is
a protective variety and so complete. Let Y be the bundle associated to E
with fibre Fr. This has a rational section (by definition of an algebraic fibre
bundle) and so a regular section, but this is precisely equivalent to giving
a reduction of the structure group to Ar (cf. (9)).

Of course the reduction to Ar is possible in many different ways. In fact
even the factors Lt of a splitting are not unique. We try, therefore, to pick
out certain maximal splittings. This is essentially a classical idea (cf.
'minimal directrix curves' in (1)) and has been utilized by Grothendieck (6).
First we need a lemma : |

LEMMA 2. The integers deg(^), for (f> e T(E) (</> =£ 0), are bounded above.

Proof. Let 0 = Eo c Ex c E2 c ... c Er = Ebea, fixed splitting of E, and
let Lt = EJEi-x. Let j> e T(E) {<j> =£ 0), then there exists an integer i > 1
such that [<f>] c Ei} [<{>] (f. E€_x. I t follows that there is a non-zero homo-
morphism [</>] -* L^andsof^] < Z^deg^) < degZ^. Thus for all ̂

f This proof js given in Grothendiock (6).
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If ^ e T(E) has the maximum degree (finite by Lemma 2) we say that <j>
is a maximal section of E. [<f>] is called a maximal line-bundle of E.

DEFINITION. (LV L2)..., Lr) is a maximal splitting of E if
(i) Lx is a maximal line-bundle of E,

(ii) (L2,..., Lr) is a maximal splitting of E/Lv

If E has sufficient sections then a maximal splitting always exists. We
shall now obtain an inequality on the degrees of the factors in a maximal
splitting. First we consider a two-dimensional bundle, and we denote the
genus of X by g.

LEMMA 3. Let (Lv L2) be a maximal splitting of E, then
deg L2 — deg Lx < 2g.

Proof. We have an exact sequence
0 -> 1 -> E <g> LX -> L2 (g> LI -+ 0.

Hence the exact cohomology sequence:!
0 -> T(l) -> T(E <g> L*) -> T(L2 <g) L*) -> HX(X, 1) ^ .

Suppose that deg(L2 <g> L*) ^ 2gr+l, then by the Riemann-Roch theorem
dimr(L2<8) L*) ^ 2 ^ + 1 - ^ + 1 = g+2.

But dimfiri(X, 1) = g. Hence the exact sequence gives
d i m r ( # ® L*) ^ 1+2 = 3.

Let xe X, then the kernel of
r ( # <g> LX) -> (E O LX)X

must have dimension at least one. Thus there exists a section^ e F(E (g) L*)
with div<£ > (x) and so deg<£ ^ 1. Now [<f>]cE ® LX, and therefore
[<f>] <g> Lx c E (gi Lx (g) LX ̂  E. But deg[<£] <S> L1'^ 1 + d e g ^ contradict-
ing the maximality of Lv This proves the lemma.

LEMMA 4. Let (Llf L2,..., Lr) be a maximal splitting of E. Then
deg Li — deg Lt_x < 2g, i = 2,..., r.

Proof. We proceed by induction on r. For r = 2 it has just been proved
(Lemma 3). Suppose it is true for all s < r, then since (L2,...,Lr) is a
maximal splitting of E\LX it follows that deg Li — deg Lt_x < 2g for
i = 3,..., r. I t remains to prove the inequality for i = 2. But let i?2 be
the sub-bundle of E of dimension two given by the splitting. Then, since
Lx is a maximal line-bundle of E, it is a fortiori maximal for E2. Hence
(Lv L2) is a maximal splitting, and by Lemma 3, deg L2 — deg Lx < 2g.

f 1 is simply the sheaf of local rings on X (usually denoted by 0 or 0).
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Our next object is to obtain an inequality in the opposite direction, and

for this purpose we must suppose that E is indecomposable.
LEMMA 5. Let E be indecomposable, and let 0 -» Ex -> E -> E2 -> 0 be an

exact sequence. Then T Hom(^1, E2 <g> K) ^ 0, where K denotes the canonical
line-bundle.

Proof. The classes of extensions of E2 by Ex are described by the elements
oiH1(X, Hom(E2, Ex)) (cf. (2)). By Serre duality this is dual to the vector
space TJIom(E1, E2® K). Since E is indecomposable the extension must
be non-trivial and so Y Hom(2£l5 E2 ® K) ^ 0.

LEMMA 6. Let E be indecomposable and with sufficient sections. Then E
has a maximal splitting (Lv L2,..., Lr) with degZ^ ^ degL1—(i— l)(2g—2),
i=l,2,...,r.

LEMMA 6'. Let X be an elliptic curve, and let E be indecomposable and with
T(E) T^ 0. Then E has a maximal splitting (Lv L2,..., Lr) with Li ^ Lx ^ 1,
i=l, 2,...,r.

Proof. We shall construct a maximal splitting with the. required proper-
ties and we proceed inductively. Since T(E) # 0, E has a maximal line-
bundle Ex ^ 1. Suppose now that we have constructed a sequence

0 = E0cE1cE2c...cEi,
where Lj = Ej/E^ is a maximal line-bundle of E/Ej^ for j = 1,..., i, and
such that the Li satisfy the requirements of Lemma 6 (or Lemma 6' if X
is elliptic). We put E\ = E/E^ Then, by Lemma 5, there exists a non-zero.
/ G F Hom(^, E'i <g> K). Since / # 0 there exists an integer j , 1 < j < i
such that / ( j y = 0, * < * , / ( « , ) ,4 0.
Then / induces a non-zero homomorphism / : Lj -> E\® K. Let <f>j be a
non-zero section of Lj (this exists by inductive hypothesis). Then/(<^-) ^ 0,
and div(f<f>j) ^ div< -̂, so that [ffa] ^ Lj. Since

[fb] cE'^K, [fj>j\ ^k^cE'^K^K^^E',.
We now distinguish two cases, corresponding to Lemmas 6, 6' respectively:

(i) X any curve, hypotheses of Lemma 6. Then E\ has sufficient sections,
since E has. Let Li+1 be a maximal line-bundle of E\, then

> deg L1—(j—l)(2g—2)—(2g—2), by inductive hypothesis,
^ degLx—i(2g—2), since j ^ i .

(ii) X elliptic, hypotheses of Lemma 6'. Then K = 1, and/<^ is a non-
zero section of E\.. If/^ is a maximal section we take Li+1 = [J<f>j\. If not
let Li+1 be a maximal line-bundle, then degLi+1 > deg[/^]+l . Since X
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is elliptic this implies Li+1 > [fyj], and we already have [f<f>j] ^ Lj. Hence
Li+1 ^ Lj > Lx by inductive hypothesis.

In both cases therefore we have found a maximal line-bundle Li+1 of
E\ satisfying the required conditions. We then take Ei+1 to be the sub-
bundle of E lying over Li+1 in the projection E -> E\. This establishes the
induction and Lemmas 6 and 6' are proved.

Remark. The inequality in Lemma 6 is actually valid for any maximal
splitting. However, we wanted to prove the two lemmas together, and so
chose this form of the result, which is sufficient for our purposes.

LEMMA 7. Let E be indecomposable of dimension r and degree d. Then
E = (Llf L2,..., Lr) where

Proof. It is sufficient to prove the lemma for an ample vector bundle E,
for if E(n) = (L'x,L'2,...,L'r) with degZ,; > (d+hnr)/r-3{r-l){g—l) then
E = (Lly L2,...,Lr) with deg 2^ = degL^—hn > d/r—3(r— l)(g— 1). Here
h = degH, where H is the line-bundle of a hyperplane section. Suppose,
therefore, that E is ample, then by Lemma 6, E has a maximal splitting
{L1}L2,...,Lr) with

d e g ^ > degL1-{i-l)(2g-2) (for i > 1). (a)
Also by Lemma 4 we must have

deg Lt - deg L^ < 2g (for i > 2). (j3)
Hence, combining (a) and (j3) we obtain, for i ̂  1,

- 2 ^ - 1 ) < d e g ^ - d e g ^ < (i-l)(2g-2). (y)
Summing for i = 1,..., r we get

_grr(r_l) ^ rdegLx—d < (g-l)r(r-l)

or -g{r-l) < degLx-dlr < (g-l)(r-l). (8)
We observe in passing that, if g = 0 (i.e. X a rational curve) these in-
equalities can only be satisfied if r = 1. This means that the only indecom-
posable bundles over a rational curve are line-bundles (Grothendieck (6)).

Finally, from (y) and (8),
degĴ  ^ degL1-(i-l)(2g-2)

^ d/r-g(r-l)-(r-l)(2g-2)
= d/r-(r-l)(Zg-2).

We can now prove a stronger form of Theorems A and B. But first we
need:

LEMMA 8. Let E be a line-bundle of degree d, with d ̂  2g. Then E is
ample.
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Proof. First we have dim JET^X, E) = dim#°(X, E* ® K) = 0 since
deg(#*® if) = -<Z+(2gr-2) < 0. Next let xeX, and let L be the
line-bundle corresponding to the divisor —x. Then we have an exact
sequence of sheaves:

O - ^ E o L - ^ E - ^ - ^ O ,
where Ex is just the constant sheaf C over x. Since

deg(E <g> L) = d-1 > 2gr-l
it follows as above that J^1(X, E <g) L) = 0. Hence we get an exact sequence

0 -> T(E <g> L) -> r(^) -* #x -> 0.
Thus F(l£) -> JE^ is an epimorphism for all x, and so E is ample.

We denote by ${r,d) the set of indecomposable bundles over X of
dimension r and degree <Z.

THEOREM 1. There exists an integer N(g,r,d) such that E(n) is ample for
all E e &{r, d) and all n > N(g, r, d).

Proof. We take N(g,r,d) = —d/r+(r—l)(3g—2)+2g (more precisely
the first integer greater than or equal to this). Then by Lemma 7

E{n) = (L1{n),...,Lr{n))i
where

degLi{n) > d/r+nh—{r— l)(3g—2) > 2g if n > N(g,r,d).
Hence, by Lemma 8 each of the line-bundles L^ri) is ample. Hence by
Lemma 1 (i) E(n) is ample.

Suppose now that X is defined over the complex field, and let

be a representation of the fundamental group of X. This gives rise to a
vector bundle over X (cf. (2)). We denote by II the subset of <f (X) arising
from such representations, and by Yl(r) the subset of II arising from r-
dimensional representations. Then it has been shown by Weil (10) (cf. also
(2)) that E G II if and only if E ^ Ex © ... © Eq where each Et is indecom-
posable and of degree zero. Hence from Theorem 1 we deduce:

COROLLARY. There exists an integer N(g, r) such that E(n) is ample for all
Eell(r) and all n > N{g,r).

This corollary enables us to generate all bundles of II (r) by mapping X
into a, fixed Grassmannian, whereas Theorem A simply asserts the existence
of a suitable Grassmannian for each individual bundle.

It is reasonable to ask whether anything analogous to Theorem 1 and its
corollary is true when X is no longer a curve. One can show by an example
that Theorem 1 does not in fact generalize. More precisely there exists an
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algebraic surface X and a family of 2-dimensional vector bundles Ek over
X such that:

(i) Ek is indecomposable,
(ii) Ek has zero Chern classes (in positive dimensions),

(ii)' Ek is topologically trivial,
(iii) if nk is the least integer for which Ek(nk) is ample, then nk -> oo as

k-> oo.
Actually, since X is of real dimension 4, (ii) and (ii)' are equivalent state-
ments. The example is a slight modification of an example given in (2). We
consider a rational curve Y, an elliptic curve Z, and we put X == Yx Z.
Choosing base points in Y and Z we may regard Y and Z as embedded in X.
For each integer i ^ l w e define an extension:!

0-> [kZ] ->Ek^ [—kZ] -> 0, (A)
whose restriction to Z is non-trivial. Such an extension exists, the proof
for any k > 1 being the same as that for k = 1 which is given in (2). More-
over Ek is indecomposable (cf. (2)) and its Chern classes are clearly zero.
The restriction of (A) to Y is a trivial extension (cf. (2)), and so

where D is a point divisor on Y. Z-\-3Y is a hyperplane section of X, and
D is a hyperplane section of Y. Suppose now that Ek(n) is ample, then in
particular it has sufficient sections and so Ek(n)\Y also has sufficient
sections. But Ek(n)\Y ^[(n+k)D]@[(n—k)D], and this has sufficient
sections only if n ^ k. Hence if nk is the least integer n for which Ek[n)
is ample, then nk ^ k and so nk -> oo as k -> oo.

In the preceding example the bundles Ek do not arise from the funda-
mental group (cf. (2)). Hence it is still possible that the corollary of
Theorem 1 may generalize. We should perhaps remark that for a line-bundle
(over a non-singular complex algebraic variety) the answer to this problem
is known. First of all a line-bundle L arises from the fundamental group
if and only if its Chern class vanishes (rational coefficients). On the other
hand, by a well-known theorem of Kodaira (7), there exists an integer n
depending only on the Chern class of L, such that L(n) is ample.

5. Second reduction method
In the preceding section we showed that any vector bundle over a non-

singular curve has a splitting. We shall now give a more general reduction,
valid for any base space.$

| If D is any divisor we denote by [D] the corresponding line-bundle.
t This theorem is essentially due to J.-P. Serre.
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THEOREM 2. Let E be a vector bundle over X with sufficient sections. Let

dim Ex = r, dim X — n, with r > n. Then E has a trivial sub-bundle of
dimension r—n.

Proof. Let V = T(E), and let P be the protective space corresponding
to V. Since E has sufficient sections we have for each x e X, an exact
sequence (cf. § 2) 0^E> y_+E 0.

To prove the theorem it is sufficient to show the existence of a subvector
space U of V such that

(i) dim U = r—n,
(ii) UnE'x = 0 for all x.

Let P"x be the projective space in P corresponding to E'x, and let Y be the
subvariety of P generated by the P^. Then

dim 7 < d imX+dimP; = n-fdim P—r.
Hence there exists a linear subspace of P of dimension r—n—I not inter-
secting Y. The corresponding vector subspace U of V has the required
properties.

Theorem 2 shows that, over a space of dimension n, the basic vector
bundles are those of dimension < n, all others being extensions of these
by trivial bundles. For a curve, n — 1, and we derive once more the fact
that every vector bundle has a splitting. We observe, however, that the
present proof is valid even if the curve has singularities. The proof in § 4
was restricted to the non-singular case, but could easily have been modified
to allow for singularities.

Let X be a non-singular curve and let the notation be as in § 4. We shall
denote by Is the trivial vector bundle of dimension s. Then combining
Theorems 1 and 2 we obtain:

THEOREM 3. Let n be any fixed integer ̂  N(g, r, d). Then every E e <o(r, d)
is an extension of a line bundle L by a vector bundle /r_i(—n), where

L = (detE)((r—l)n).
The classes of extensions of L by /r_1(—n) are in (1-1) correspondence

with the elements of

If we choose n so that degL*(—n) < 0, then (by the Riemann-Roch
theorem) this vector space will have a dimension independent of the choice
of E. The totality of these vector spaces may then be given a vector bundle
structure over the Picard variety of X (cf. (8)). Let this vector bundle be
denoted by !F. Every point of SF corresponds to an extension of L by
/r_i(—n), and so to a vector bundle E over X. In this way, by Theorem 3,
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we obtain all E e <f>{r,d). However, different extensions may give rise to
isomorphic vector bundles, and some extensions may correspond to decom-
posable bundles. Thus the best we can assert is the following:

THEOREM 4. ${r, d) is in (1-1) correspondence with a subset of^/Q, where
&is a vector bundle over thePicard variety of X, and Q is a fibre-preserving
equivalence relation in SP'.

By a more detailed study of the situation one might use Theorem 4 to
endow $(r, d) with the structure of an algebraic variety. For certain special
cases (g = 1, 2; r = 2) this was essentially the method adopted in (1).

P A R T I I

E L L I P T I C VECTOR BUNDLES—ADDITIVE STRUCTURE

From now on X will denote a non-singular curve of genus one. We shall
denote by A a fixed line-bundle over X of degree one; this corresponds to
fixing a base point on X. X may then be identified with its Picard (or
Jacobian) variety, the base point being taken as the zero. Also the mapping
E -*• E <g> An defines a (1-1) correspondence ${r,d) -» &(r,d-\-nr). Hence
we may, if convenient, restrict ourselves to the range 0 < d < r.

LEMMA 8. / / deg E = d, then
dim T(E) - dim H\X, E) = d.

This is a special case of the Riemann-Roch theorem (cf. Part I, § 4).
LEMMA 9. Let E be a non-trivial extension of E2 by Ex

1 2
Then T H o m ^ , E2) =£ 0.

This is a special case of Lemma 5, since K = 1 for an elliptic curve.
LEMMA 6'. Let E be indecomposable and with Y(E) ^ 0. Then E has a

maximal splitting (Llt L2,..., Lr) with Lt^ 2^ > 1.
This was stated and proved in Part I. We merely reproduce it for

convenience.
LEMMA 10. Let E e £{r, d),0 < <Z < r, and let s = dim T(E) > 0. Then

E has a trivial sub-bundle Is.Is.
Proof. By Lemma 6' E has a maximal splitting (Lv L2,..., Lr) where

Lt ^ Lx ^ 1. If degLx > 0, then
r

d = degE = 2 degZ^ > rdegi^ > r,
I

a contradiction. Hence deg Lx = 0, and since Lx > 1 we must have Lt = 1.
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But Lx is a maximal line-bundle of E. Hence, for all <f> e T(E), div<j> = 0;
in other words T(E) -> Ex is a monomorphism for all x. Hence V(E)
generates a trivial sub-bundle Is of E.

Note. The condition s > 0 is always satisfied if d > 0, by Lemma 8.

LEMMA 11. Let E e ^(r,r). TAeTt E has a maximal splittiTig (L, L,..., L)
where deg L = 1.

Proof. By Lemma 8 s = dim F(i?) > r. Then by Lemma 6' E has a
maximal splitting E = {Lx, L2,..., Lr) where £{ ^ 2^ ^ 1. If deg Lx — 0,
then as in Lemma 10 we find that E has a trivial sub-bundle /,. But this
implies s = r and E = Ir, a contradiction since # is indecomposable. Hence

^ 1. But r
r = deg E = 2 deg L{ > r deg L1}

I

equality holding if and only if Li ^ Lx for all *. Hence we must have
deg Lx—\ and Lt ^ Lx for all i.

DEFINITION. An extension §-> E' X E •?> E" ->0is said to be E"'-partial
if there exists a diagram

E^E"

with El ^ 0, the vertical column exact, and qpj = 1. An extension which is
not E"-partial is said to be E"-complete.

Dually the extension is 2£'-partial if there exists a diagram

0

4
E' ^> E

with E'x ^ 0, the vertical column exact, and qij = 1. Clearly if an exten-
sion is ^"-partial then the E"x given by the diagram is a direct factor of
both E and E". In particular, if E" is indecomposable, an extension is
j&"-partial if and only if it is trivial.

LEMMA 12. An extension 0 -»• E' -> E ->• Is -> 0 is Incomplete if and only
ifp*:r(E)-+r(I?)iszero.

Proof. A direct factor of Is is itself a trivial bundle (e.g. by the KruU-
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Schmidt theorem (3)), and so the extension is /^-complete if and only if
there exists no diagram „

E^I

Io
(with the vertical column exact and qpj = 1). Suppose such a diagram
exists, then 1 is a direct factor of I8 and we get a diagram with exact vertical
and q±p*j± = 1* »

o
Hence p* ^ 0. Conversely, suppose p* # 0, then, for some <f> e T(E),
p+(<f>) = </r ̂  0. We have divtfj > div<£ > 0; but div«/» = 0 since 0 e F(/a).
Hence div <j> = 0, and so <£ generates a trivial line-bundle [<f>] of E mapped
isomorphically by p onto the trivial line [ft] of Is. Thus we get a diagram

E ^ Ist lq
It] = [fl

1
0

(in which q is any projection of Is onto the direct factor [«/»]), which shows
at once that the extension is /^partial. The lemma is therefore proved.

LEMMA 13. (i) The classes of extensions

are in (1-1) correspondence with the 'coboundary homomorphisms'

(ii) (JEJ) is Incomplete if and only if 8 is a monomorphism.
(iii) / / dim^1(X, E') = s there exists a unique E (up to isomorphism)

such that (E) is Incomplete.

Proof, (i) From the exact sequence 0 -> W -> E -*• Is -> 0 we obtain the
exact cohomology sequence:

o -> r(^') -̂  r(^) ^ r(/s) -> H\X, W) ->. (3)
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Now the classes of extensions of Is by E' are in (1-1) correspondence with
the elements of

JBT1(Z>Hom(I.,E/)) ^
(cf. (2)). Moreover, it is immediate from the way this correspondence is
defined (cf. (2)), that it assigns to each extension (E) the homomorphism
8 of the exact sequence (3).

(ii) Using (3) this is simply a restatement of Lemma 12.
(iii) If dimi/^X, E') = s, then (E) will be Incomplete provided 8 is an

isomorphism. Any two such isomorphisms differ by an automorphism of
T(IS), and so the vector bundles E of the corresponding extensions are
isomorphic.

LEMMA 13*. (i) The classes of extensions
(E):0-±Is->E^E'->0

are in (1-1) correspondence with the 'coboundary homomorphisms'
8: rt/JJ-^tf^X.E'*).

(ii) (E) is Incomplete if and only if 8 is a monomorphism.
(iii) If d i m i / 1 ^ , E'*) = s there exists a unique E (up to isomorphism)

such that (E) is Incomplete.
Proof. This follows by duality from Lemma 13.
Remark. Lemmas 12, 13, 13* are valid for any algebraic variety. By

contrast Lemma 14 which follows uses properties of the elliptic curve.
LEMMA 14. Let 0 -» 7S -*• E ->• E' -^ 0 be Incomplete. Then

6imT{E) = dimT(E').
Proof. From the exact cohomology sequence

0 -> T(E'*) -> T(E*) -> T{I*) -+ H^X, E'*) -> ,
and using Lemma 13* we see that T(E'*) ^ F(E*). By duality this gives
d imi^X, E') = dimH^X, E). Also we have degE = deg^', and so by
Lemma 8 dim T(E) = dim T(E').

We now give what is essentially a 'uniqueness theorem' for <f (r, d). The
'existence theorem' will come later.

LEMMA 15. Let E e &{r,d), d ^ 0. Then
(i) s = dim T{E) = d if d > 0

= 0 o r l ifd = O;
(ii) if d < r, E contains a trivial sub-bundle Is and E' = E/Is is indecom-

posable; moreover dim T(E') = s.



VECTOR BUNDLES OVER AN ELLIPTIC CURVE 431
Proof. If d > r, then as in the proof of Lemma 11, we find

E = (LvL2,...,Lr)
whereeachL; > 1. Thus-ff^L,) = Oandsotf^E) = O(cf.Lemmal).
Hence by Lemma 8 dim T(E) = d. Suppose now that d < r. If d = 0 and
T(E) = 0 there is nothing to prove; hence we may suppose that T(E) ^ 0
if d = 0. If d > 0, we always have T(E) ^ 0 by Lemma 8. Then by
Lemma 10 we have an exact sequence:

(E):0->Is-*E^E'r>Q.
Since E is indecomposable (E) is certainly /̂ -complete. Hence by Lemma 14
diml^E') = dimr(^) = s, and so by duality dimi^X.E'*) = s. By
Lemma 13* the extension (E) corresponds to a monomorphism

and since both terms here have dimension 5, 8 must be an isomorphism
Suppose, if possible, that E' is decomposable: E' = F 0 0 with F =fc 0,
0 ^ 0. Then we may write 8 = B1 ® 82 where

8X: T(IJ) -* J5P(Z, F*), 82: r ( i j ) -* £P(Z, G*)
are isomorphisms,/= dimfiri(X,F*), ^ = dimHX{X, G*). By Lemma 13
8X and 82 correspond to extensions

(E1):Q->If^E1-+F^ 0,
(#2):0-»J^#2-*G->0.

Thus 8X 0 82 corresponds to (Ex) ® (E2), and also to (E). Hence, by
Lemma 13, E ̂  Ex 0 JE72, a contradiction. We observe that this proof is
valid even if one of/, g is zero.

We have now proved (ii) and (i) for d^-r. It remains to prove (i) for
0 < d < r. We proceed by induction on r. For r = 1 (i) is certainly true;
suppose it is true for all r' < r, in particular then for r—s. Hence, since
E'e*(r-8td), dimT(E') = d if d > 0

= 0 or 1 if d = 0.
But we have already shown that 6imT(E') = dimF(-E). Hence (i) is
established,

We shall now give the 'existence theorem'.
LEMMA 16. Let E' e &(r',d) d > 0, ami if d = 0 we suppose r(E') ̂  0.

Then there exists a vector bundle EeS1^, d), unique up to isomorphism,
given by an extension

(E):0^Is^E
where r = r'-\-s, and s = d if d > 0

= 1 if d = 0.
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Proof. By Lemma 15 (i) we have dimT(E') = s. Hence by Lemma
13* (iii) there exists a unique E (up to isomorphism) such that (E) is Is-
complete. It remains to show that in this case (E) is incomplete if and
only if E is indecomposable. One direction is obvious, and we shall now
prove the other, viz. if (E) is Incomplete then E is indecomposable.
Suppose if possible that E = F © G, F ^ 0, G ̂  0. By Lemma 14

dim F(E) = dim r(Ef) = s,
so that T(Ia) -> T(E) is an isomorphism. Let dim T(F) = / , dim T(G) = g,
f-\-g = s. Then F must contain a trivial sub-bundle If and G must contain
a trivial sub-bundle Ig, where If © Ig = Is. Hence # ' g* E/Is ^ F/If® G/Ig.
But E' is indecomposable by hypothesis; hence either F = If, or G = Ig.
But this would contradict the fact that (E) is incomplete. Thus E is
indecomposable.

THEOEEM 5. (i) There exists a vector bundle Fr e &(r, 0), unique up to
isomorphism, with Y{Fr) ^ 0. Moreover we have an exact sequence:

0-+l-+Fr-> Fr_1 -> 0.
(ii) Let E e <f (r, 0), then E ^ L 0 Fr where L is a line-bundle of degree

zero, unique up to isomorphism (and such that L ^ deti£).
Proof, (i) Consider all E e i(r, 0) with T(E) ^ 0, and let £(r, 0) be the

corresponding set of equivalence classes. We prove by induction that
<f(r, 0) consists of a single element/,.. For r = 1, there is only the trivial
line-bundle. Suppose now that the result is true for all / ' < r. If E 6 $(r, 0),
then by Lemma 15 we have an exact sequence

0 -> l -> E -+ E' -+ 0,
where E' e S(r—\, 0). By inductive hypothesis we must have E' ^ Fr_x.
On the other hand, by Lemma 16, there is a unique E (up to isomorphism)
in $(r, 0) given by an extension

0 -> 1 -> E -> Fr_x -> 0.
Thus <f (r, 0) consists of a single element and the induction is established,

(ii) Let E e &(r, 0), then E <g> A e £(r, r) and so by Lemma 11
E®A = (Llt !*!,„., Lx)

where deg Lx = 1. Hence E <g) A <g) L* e < (̂r, 0), and so by (i)
E (8) A 0 L* ^ Fr,

i.e. E ^ Fr 0 L where L = Lx0A*. We must now show that Fr ̂  Fr 0 L
implies L ^ l . But Fr = (1,1,..., 1) and so Fr 0 L = (L, L,..., L), where
deg L = 0. If L is not a trivial line-bundle, then

dim T{Fr 0 L) ^ r dim T{L) = 0.
But dimr(.Fr) = 1. This gives the required contradiction. Finally, since
det Fr^lwe get det Eg^U.
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COROLLARY 1. Fris self-dual, i.e. Fr ^ F*.
Proof. By construction Fr is a successive extension of trivial line-bundles.

In particular .Fr has 1 as a quotient bundle. Hence F* has 1 as a sub-bundle
and so T(F*) ̂  0. Thus F* e £(r, 0) and so, from Theorem 5 (i), F* ̂  Fr.

COROLLARY 2. For alls < r we have exact sequences
0->Fs-*Fr->Fr_s->0.

Proof. Since Fr has a unique trivial line-bundle 1, and since Fr/l ^ JPr_1,
it follows that i^has, for each s < r, a unique sub-bundle E8 of dimension s
which is a successive extension of trivial line-bundles, and we have an
exact sequence: 0 _+E _> F _+F ^ 0 .

5 T T S

Interchanging s and r—s and then dualizing we obtain an exact sequence
0 -> F* -> F* -+ E*_s -+ 0.

By Corollary 1 F* <̂  Fr, F* ̂  Fs. But Fa is a successive extension of
trivial line-bundles. Hence we must have Fs ̂  Es, by the uniqueness of
Es in Fr.

THEOREM 6. Let A be a fixed line-bundle on X. Then A determines a (1-1)
correspondence ei-u tw • ai j \

r <xrd\ 6(h,0)-+£'(r,d),
where h = (r, d) is the highest common factor of r and d. If we choose repre-
sentative vector bundles E from the classes of ${h, 0), <xrd is defined uniquely
by the following properties:

(i) ar0 = 1 (the identity),
(ii) otr>d+r(E)^ctr>d(E)®A,

(iii) if 0 < d < r, we have an exact sequence:

Finally we have detard{E) ^ detE (g> Ad.
Proof. First A determines a (1-1) correspondence <<>{r,d) <-*• $(r\d-\-r)

by the operation ® A. Hence it is sufficient to consider 0 ^ d < r. If
d = 0 we have h = r and we take ar 0 = 1 . If d > 0, then by Lemma 15
we have, for each E e $(r,d), an exact sequence:

0 -> Id -> E -> E' -> 0,

in which E' e S(r—d, d). Conversely let E' G £(r—d, d), then by Lemma 16
there is a unique E (up to isomorphism) in S(r, d) which is an extension of
E' by Id. This gives a (1-1) correspondence between &{r, d) and $(r—d> d).
Using this together with (ii) we clearly obtain a (1-1) correspondence
a^: &(h, 0) -» £(r,d). The number of times the steps (ii) and (iii) have to
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be performed, and the order in which they occur are given explicitly by the
Euclidean algorithm for determining the highest common factor h of r and d.

The formula for det<xrd{E) follows at once from (ii) and (iii).
In <o{h, 0) we have the preferred element fh. We put eA(r, d) = ar>d(/ft),

so in particular ,-, m ,.
eA{h,O)=fh.

By Theorem 5 (ii) ${h, 0) is in (1-1) correspondence with <f (1,0), i.e. with
the Picard variety of X. Since X is of genus one the Picard variety may
be identified with X itself, once we have picked a base point A. Thus by
Theorem 6 we have a (1-1) correspondence between <o(r, d) and X, and we
may use this to define the structure of an algebraic curve on $(r, d). Using
the final statements of Theorems 5 and 6 we can then summarize our
results in the following form:

THEOREM 7. LetX be an elliptic curve, A a fixed base point on X. We
may regard X as an abelian variety with A as the zero element. Let <o{r,d)
denote the set of equivalence classes of indecomposable vector bundles over X
of dimension r and degree d. Then each ${r, d) may be identified with X in
such a way that

det: &(r,d)^£{\,d) corresponds toH:X-*X,

where H(x) = hx = x-\-x-\-...-\-x (h times), and h = (r,d) is the highest
common factor of r and d.

COROLLARY. Let h = (r, d) = 1. Then if E e £{r,d)
(i) E -> det E gives a (1-1) correspondence $(r, <Z) - x f (1, d),

(ii) E ^ EA(r,d) <g> L for some line-bundle L of degree zero,
(iii) EA(r, d ) 0 L ^ EA{r, d) if and only if 1/ ^ 1,
(iv) EA(r,d)*^EJr,-d).

Proof, (i) is an immediate consequence of Theorem 7. (ii), (iii), and (iv)
then follow from (i). In fact

det[^(r , d) <g) L] ^ Ad <g> Lr;

but there exists an L such that Ad ® 1/ ^ det E, and Ad <g> Lr ^ Ad if
and only if II ^ 1. Also det EA(r, d)* g* detEA(r, -d) ^ A~d.

The analogue of this corollary for h > 1—which gives the A-module
structure of £—is more involved, and we postpone consideration of it till
Part I I I (cf. Theorem 10).
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PABT I I I

E L L I P T I C VECTOR BUNDLES—MULTIPLICATIVE
STRUCTURE

1. The ring &
I t is well known that the multiplicative structure of the divisor class

group depends on the characteristic of the ground field k. Thus, for an
elliptic curve, if k is of characteristic zero there are n2 divisor classes of
order dividing n. But if k is of characteristic p there are either p° or p1

divisor classes of order dividing p, according as the Hasse invariant of X is
zero or non-zero. Clearly, therefore, the multiplicative structure of the ring
$(X) will depend on the characteristic, and on the Hasse invariant. To
avoid complication we shall suppose k is of characteristic zero, but we shall
indicate whenever possible which results extend (with or without modifica-
tion) to the case of characteristic p.

We start by examining the products Fr <g) F8, where Fr is the vector
bundle defined in Theorem 5.

LEMMA 17. (i) d i m T ^ ® Fs) = min(r,s),
(ii) Let L be a line-bundle, then dim T(L <g> Fr ® Fs) = 0 unless L ^ 1.
Proof, (i) Suppose r < s. If r = 1 then dimr(.Fs) = 1 (Lemma 15 (i)).

We proceed by induction on r > 1. We have an exact sequence
0^.l-^Fr-^Fr_1^0, (4)

and hence an exact sequence
0 -> Hom(J1

r_1) Fs) ->• Kom(Fr) Fs) - t Hom(l, Fs) -» 0.
Now we have an injection i: Fr -> Fs (Corollary 2 of Theorem 5), and j8+(i)
is a generator of the one-dimensional vector space F Hom(l,.Fs). Hence

dim T Hom(i?;, Fs) = dim T Hom(i?T
r_1, F8)+l.

But Fr ~ F* (Corollary 1 of Theorem 5), and so B.om{Fr,Fs) g^Fr® F8.
H e n c e dim r(,Pr <g> Fs) = dim V(Fr_x <g> F.)+1

= r—1 + 1 by inductive hypothesis,
= r.

(ii) Since Fr — (1,1,..., 1) and Fs = (1,1,..., 1), it follows that
L®Fr®Fs = (L}L,...,L).

Hence T(L ®Fr® F8) = 0 unless T(L) =£ 0, i.e. unless L > 1.
min (r,s)

LEMMA 18. Fr ® Fs^ J, Fr}> 2 ri = rs-
; 1 j
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N

Proof. Let Fr <g> Fs ̂  £ 2^ be the direct decomposition of Fr ® JP into
i=i

indecomposable factors. We assert first that degi^- = 0 for all j . If not,
since ]£ degE^ = 0, deg^- > 0 for at least one j . Let L be a line-bundle

j
of degree zero, L $k 1. Then T(L <g> 2£ <g> i^) = 0 by Lemma 17. But
deg(£ <g) Ej) > 0 and so dim V(L <g> ^ ) > 0 (Lemma 8). This gives a
contradiction. Thus Ei e &{rp 0), and so Ei ^ Lj <g> JP} (Theorem 5 (ii)).
We assert that Li ^ 1 for aU j . If £;. ̂  1 then T(Lf <g>Fr®Fs) = Q
(Lemma 17), but T(Fj) ^ 0, a contradiction. Finally, since dimr(i^) = 1,
we have N = dimT(Fr ® FB)

= min(r, s) by Lemma 17 (i).
COKOLLABY. Let 3^ denote the subset of $ generated by thefr (r > 1) with

respect to ®,^ the corresponding subgroup of $. Then & is a sub-ring of S.
Considered abstractly ^ i s a commutative ring with unit satisfying the

following conditions:
(a) with respect to addition «#" is a free abelian group with elements fr

(r = 1, 2,...) as generators,!
min(r,s)

(b) frfs = 2 U where 2 ri = rs-
3 = 1 j

Condition (6) implies that/x = 1.
Since Lemmas 17 and 18 did not involve the characteristic of k, & has

the above properties whatever the characteristic. However, (a) and (6) do
not quite suffice to determine $ completely, and we shall see that the
structure of # does in fact depend on the characteristic. We consider the
following additional hypothesis on Ĵ ",

Conditions under which this is satisfied are contained in the following
lemma.

LEMMA 19. Let p be the characteristic of k, and let r be prime to p. Then
if E is a vector bundle of dimension r, we have a canonical decomposition:

End{E) 9*1® Ef,
where E'x is the subspace ofEnd{Ex) consisting of endomorphisms of trace zero.%

Proof. Let <f>x e End Ex, and let trace (<f>x) — Ax. Then

f In the sense of finite linear combinations.
% End(S) = Hom(J£, E) is the bundle of endomorphisms of E.
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gives the canonical isomorphism, where lx denotes the identity endo-
morphism of Ex.

COROLLARY. If r is prime to p, then Fr ® Fr ̂  1 © F'.
Proof. Fr ̂  F? and so End Fr ̂ Fr® Fr.
Thus & satisfies hypothesis (Hr) whenever r is prime to p. In particular

if p = o, & satisfies (Hr) for all r. We shall prove shortly that (a), (6), and
(Hr) (for all r) characterize the ring &. First we give a preliminary result:

LEMMA 20. Let $ be a ring satisfying (a) and (b). Then

fJr = fr-l+fr+l */ (#r) holds (r > 2),
= 2/r otherwise.

Proof. Consider first the case r = 2. By (6) we must have / ! = l + / 3
o r / | = 2/2. Thus the lemma is true for r = 2. Assume now that it is true
for r—1 (r ̂  3), and let / 2 / r = / s+/2 r-s . Consider the equation

\fzfr-l)Jr = = fr-\\J2Jr) = /r-l(/3~r/2r-s)'

By inductive hypothesis f2fr-i = /r-2+/r o r 2/r-ii in either case it follows
from (6) that (/2/r-i)/r contains 2r—2 terms in its expansion. Hence,
using (6) again, we see that we must have s ^ r— 1, 2r—s ^ r—1. Hence
the only possibilities are:

(i) /2/r = /r-l+/r+l>

(") /2/r = 2/r.

Suppose first that (#,.) holds, then if (ii) held we would get

/2/r2 = 2/?.
The number of terms in 2/p is 2r, while in f2f* it is at most 2r— 1 (by (i/r)
and (6)). This is a contradiction, and so we must have (i) if (Hr) holds.

Suppose now that (Hr) does not hold, and examine (i). This would give
/2/r = (/r-i+/r+i)/r- Since (^.) is false f2f? contains 2r terms, while the
right-hand side of this equation contains only 2r—1 terms. This is a
contradiction and so we must have (ii) if (Hr) does not hold. This completes
the proof of the lemma.

LEMMA 21. Let & be a ring satisfying (a), (6), and (Hr)for allr ^ 1. Then
& is unique to within isomorphism, and the multiplicative structure is given
by the formula:

frfs = /r-s+l+/r-8 +3+-+/r+ s-l (»* > *)•
Proof. If s = 1, / s = 1 and the formula is trivial.
For s = 2 we have Lemma 20. Hence we may suppose s ^ 3 and we
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proceed by induction on s. We assume, therefore, that the formula is true
for s—2 and 5—1. Consider the associativity equation

kUs-Jr) = (A/.-l)/r.
Applying the inductive hypothesis on the left and Lemma 20 on the right

J2\Jr-s+2~rfr-s+i~T~""~^~fr+s-2) =z (Js-2~rJs)Jr'
Now apply the inductive hypothesis on the right and Lemma 20 on the
left and we get

/r-s+lH~2/r_s+3+". + 2/r+s_3-f-|/r+s_i = Jr-s+3~r "'~\~Jr+s-3iJrJs'

Hence frfs = / r_ s + 1+/f -s+3+-+/r+«- l -
Combining our results together we get the following:
THEOREM 8. Let X be an elliptic curve over a field of characteristic zero.

Let & be the subring of <?(X) generated by those indecomposable bundles of
degree zero which have a non-zero section. Then & is a free abelian group
with fri r > 1, as generators and

frfs = /r-S+l+/r-S+3+--t-/;+S-l (** > 4-
The formula of Theorem 8 suggests a relationship with a similar formula

in representation theory which we proceed to explain. Let E be a 2-
dimensional vector bundle over any algebraic variety X. Then the Clebsch-
Gordan formula for the tensor product of two polynomials gives rise to an
isomorphism

S*{E) <g> S^E) g* St>+Q{E) © (det E) <g> 8*-\E) <g> S^E),
where Sp denotes the £>th symmetric product. If we agree that S°(E) is to
be the trivial line-bundle, then this formula is valid for p, q ^ 1. If in
particular deti? ^ 1, then by iterating this formula we find

S?(E) <g) S*[E) ^ Si>+<i(E) © SP+«-2(E) © ... SP-Q{E) (p > q).
We return now to the case of an elliptic curve X over a field of charac-

teristic zero, and we prove:
THEOREM 9. Fr ̂  Sr-l{F2)for r > l.
Proof. For r = 1, 2 this is immediate. Suppose it is true for alls < r,

r ^ 3. Then we have
Si(F2) ® S'-*(F2) c^F2® Fr_v

Expanding the left-hand side by the formula given above and the right-
hand side by Theorem 8, we get (since deti^ ^ 1)

But, by inductive -hypothesis, Sr-Z{F2) g* Fr_2. Hence S1"-1^) S Fr.
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Remarks
(1) We have deduced Theorem 9 from Theorem 8. However, we could

have proved Theorem 9 directly and Theorem 8 would then have followed
from the Clebsch-Gordan formula.

(2) In characteristic p the ring & is more complicated, and we shall not
examine it in full. However, one can show the following: F2 <g) Fr ̂  Fr © Fr
if r = 0 modp. This shows that (Hr) is false if and only if r = 0 mo&p
(cf. Lemma 20).

2. A-module structure of i
LEMMA 22. Let E e ${r;d) where (r, d) = 1. Then End E ^ J Lt, where

i=l
the Li are thv\ line-bundles of order dividing r.

Proof. For each line-bundle Li of order dividing r we have
E® Lt^E

(Corollary to Theorem 7). Hence
E*®E®Lig=LE*®E, i.e. End E <g> L€ ^ End E.

But EndE contains 1 as a direct summand (Lemma 19). Hence Endi£
contains each Li as direct summand. But there are exactly r2 such Lit

and End E is an r2-dimensional bundle. Hence End E ^ ]£ L^
i=l

This lemma is the key to the determination of the ring structure of S.
I t will be used constantly. We note in passing that it fails to hold in
characteristic p for two reasons: (i) Lemma 19 does not hold, (ii) the
number of Li of order dividing r is not always r2.

LEMMA 23. Let (r,d) = 1, then EA(r,d) <g> Fh is indecomposable.
Proof. ¥utE = EA(r,d)<g)Fh. Then

EndE ^ End EA(r,d) ® End 2^,
and applying Lemma 22 and Theorem 8 we get:

Now T(Li <S> Fk) = 0 unless Li ^ 1 (Lemma 17 (ii)), and this holds for
just one value of i. Hence F End E ^ F End Fh, the isomorphism being
given by I<gi<f><->•</>, where / is the identity endomorphism of EA(r,d).
Hence this isomorphism is an isomorphism of algebras. But the structure

t More precisely L\= \ and Lt and Lj are not isoniorphic if i ^ j . The LK are
unique to within isomorphism.
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of the algebra FEnd E determines whether or not E decomposes. Hence,
since JF^ is indecomposable, it follows that E is indecomposable.

We shall next find the precise element in ${rh, dh) defined by EA(r, d) (g) Fh.
LEMMA 24. Let (r,d) = 1, then

EJr,d)®Fh^EJrh,dh).
Proof. We prove the lemma by double induction on r and h. More

precisely we assume the lemma true (for h, r ̂  2)
(i) for h— 1 and all r,

(ii) for h and all s < r— 1.
First we observe that if h = 1, then Fh = 1, and so the lemma is true

for all r. Also if r = 1, EJr, d) = Ad, EJrh, dh) = Ad <g> Fh by definition.
This starts the induction.

Now we have the exact sequence:
O-^l^i^i^-^O. (5)

(5) <g> EA(r,d) gives,the exact sequence:
0 -> EJr, d) -» EJr, d)<8)Fh-> EJr, d) <g> Fh_r -> 0. (6)

Since EJr, d) (g) A ̂  -E^rj^+f) it; suffices to consider the range 0 < d < r.
Then also 0 < dh < rh, 0 < <Z(&—1) < r(h—1). For brevity we write
(6) as 0-^E1-^E2-^-E3->0, and we put ̂  = deg Ei} r{ = dim Et. Then
JÊ  e ̂ {rit d{) (Lemma 23), 0 < dt < rt. Hence, by the results of Part II,
dimF(^) = dt and Y{Ei) generates a trivial sub-bundle Idi of E{; more-
over, if E'i = EJIdi then E\ e S{ri—di, d{), and E{ ̂  EJrit dt) if and only
if E\ ̂  E'Jri—dird^. Thus we have an exact sequence diagram:

0 0 0
\ Y I

Y Y Y

0^E1-+E2-*E3->0
Y Y Y

0 -> ^ i -> E'2^ E'3 -+ 0

Y Y Y
0 0 0

Applying inductive hypothesis (i) in the last column of the diagram, we
find E3 ̂  EJrs, d3), hence E'z ̂  EJrz—dz, d3) and so again by (i)

E'3c^EJr-d,d)®Fh_v

Also E[ = EJr—d, d), hence
dim FHom(#;, #3) = dim F f E n d ^ r - d , d) ® Fh_x)

= 1 by Lemma 22 and Theorem 5.
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Now the extension classes of E'3 by E[ correspond to the elements of
H1{X,'Rom.(E'3,'E\)), and the extensions corresponding to a, Xa, where
aGJ&f1(Z,Hom(E'3JE1)) and A is a non-zero constant, define isomorphic
vector bundles. In the present case this vector space is of dimension one
(by duality) and so any two non-trivial extensions define isomorphic vector
bundles. Now the bottom row of the diagram is one extension, and
(5) <S> EA(r—d, d) is another. Moreover, both are non-trivial extensions
since JE"2 and EA(r—d, d) <g) Fh are indecomposable (the latter by Lemma 23
or by (ii)). Hence

E'2 g* EJr—d, d) <g> Fhg^ EA(h(r—d), hd) by inductive hypothesis (ii).
Thus E2 g^ EA(rh, dh), arid the induction is established.

COROLLARY 1. For any r, d, EA(r,d) ® L g± EA(r,d) if and only if
Ijrlh ^ i} where h = (r,d).

Proof. Put r' = rjh, d' = d/h, then by Lemma 24
EA(r,d)g±EA(r',d')®Fh.

Suppose L is of order dividing r', then by the Corollary to Theorem 7
EA(r', d')®Lg± EA(r', d'). Hence, EA(r, d) ® L g± EA(r, d).

Conversely, suppose that L is such that this holds. Then
End^(r,d!) ® L ^ RndEA{r,d).

But, by Lemma 22 and Theorem 8, we have
End EA{r,d) g* EndEA(r',d')

Hence, equating the line-bundle summands of
EndEA{r, d) and EndEA{r, d) 0 L,

we see that L ^ Lt for some i, i.e. Lr' ^ 1.
COROLLARY 2. EA{r,d)* ^ EA(r, —d).
Proof. By Lemma 24 EA{r,d)* g* EA{r',d')* ® F%, where h = (r,eZ),

r' = r/h, d' = d/h. But F% g± Fh (Corollary 1 to Theorem 5) and
EA{r', d')* g* EA(r', -d') (Corollary to Theorem 7).

H e n c e EA(r, d)* Q* EA(r', -d') ® Fh

g^. EA(r, —d) by Lemma 24.
LEMMA 25. Let (r,d) = 1, 0 < d < r and let L be a line-bundle of degree

zero. Then we have an exact sequence:
0 -> Idh -» EA(rh, dh)® L-> EA(rh—dh, dh) ® U -+ 0,

where L' is any line-bundle such that Ll{x~d) g^ Lr.
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Proof. For h = 1 this follows from the Corollary to Theorem 7. We

proceed by induction on h and we use the diagram in the proof of Lemma 24.
We operate on the middle row by 0 L, and we then get a new diagram
of the same form in which E'x, E'3 are replaced respectively by E'x 0 L',
E'3 0 U with Z/fr-*-^ If (the induction hypothesis for the third column
and h =± 1 for the first). But, as before, the middle term in the bottom
row is then uniquely determined (up to isomorphism) and so must be
E'z 0 L'. This completes the proof.

LEMMA 26. Let E e $(r,d). Then there exists a line-bundle L such that

Proof. We proceed by induction on r. Also we may assume 0 < d < r,
since for d = 0 we have Theorem 5. Then we have an exact sequence:

Q^Id^E->E'->0.
By inductive hypothesis E' ̂  EA(r—d,d) 0 L' for some L'. Let L be
any line-bundle such that Iflh g* L'(-r-a>lh

) where h = {r, d). Then by
Lemma 25 we have the exact sequence:

0 -> Id -> EA(r, d) 0 L -> E' -> 0.
Hence E ̂  EA(r, d) (g> L.

Combining Corollary 1 to Lemma 24 with Lemmas 25 and 26 we obtain:
THEOREM 10. Every vector bundle E e £{r, d) is of the form L ® EA(r, d),

and L 0 EA(r, d) ^ EA(r, d) if and only if Lrlh ^ 1, h = (r,d). Moreover,
if ocrd'. <^(h, 0) ->• <^(r,d) is the (1-1) correspondence given by Theorem 6, we
teve a r > d ( 2 / /A®F h )^L® ocr>d(Fh) c^L® EA(r,d).

Theorem 10 identifies £{r,d) more precisely than Theorem 7 and gives
the complete A-module structure of S. As we remarked in Part I § 3 this
enables us to determine all projective bundles. Since E and E 0 L decom-
pose together it follows that we may speak of a projective bundle as being
indecomposable. Hence if Pr = GLr(k)/k* we obtain:

THEOREM 11. There are just r equivalence classes of indecomposable Pr-
bundles over X.

Remark. We have determined the A-module structure of $ via the ring
structure. Actually it is possible, though considerably more complicated,
to avoid using the ring structure. In particular Theorems 10 and 11 still
hold in characteristic p.

3. Ring structure of S
LEMMA 27. Let (r,d) = (r',d') = 1, (r,r') = k, and let

EA(r,d)®EA(r',d')^ZEi,
i

where Ei e ̂ {r^ dt). Then r± divides rr'jk and (rif d{) = 1.



VECTOR BUNDLES OVER AN ELLIPTIC CURVE 443
Proof. Let E = EJr,d) ® EA(r',d'). Then, by Lemma 22,

E l i d e s ( 2 ^ ) 0 ( 2 14),
where the X3- (Z4J are the line-bundles of order dividing r (/). Let
ht = (r^dj, then Ei^,Ei^ Fhi, Et e ^(rjh^djh^ (by Lemmas 26 and
24). Hence

( 2 a
z=i

where the Ln are the line-bundles of order dividing rjh^ But End 2^ is a
direct summand of End E, and so must decompose completely into line-
bundles. This is only possible if ht = 1, i.e. (ri} dt) = 1. Also the Ln must
then be of the form Li <g> L'm, and so of order dividing rr'/k. Hence ri
divides rr'/k.

If k = 1 the situation is very simple and we have:
LEMMA 28. Let (r,d).= {r',d') = (r,rf) = 1. Then

EA(r,d)<g) EA(r',d') ^ EA(rr',rd'+r'd).
Proof. Put E = EA(r,d) ® EJr',d'). Then, by Lemma 22,

End ^ ^ 2 ^ ® ^ * .
where the 2^ are of order dividing r, the L^ of order dividing r'. But
Li (g) L^ ^ 1 imph'es Li ^ L^ ^ 1 (since {r,r') = 1 ) , and this occurs for
just one pair (i, m). Hence dim F End J& = 1, and so every endomorphism
of E is a multiple of the identity. Hence E is indecomposable, and so
E e S{rr\ rd'+r'd). But det E ^ det EA(r, d) ® det ^ ( / , d') ^ ^d'+/d>
Hence, since (rr'.rd'+r'd) = 1, E g^ EA(rr', rd'+r'd) (Corollary to
Theorem 7).

LEMMA 29. Let (r,d) = 1, and let r = rxr2... rn be the factorization of r
into prime powers, i.e. ri = p\{ where the pt are distinct primes. Then
EA(r, d) ^ EA{rlt dx) ® ... ® EA(rn, dn) if and only if J (dju) = d/r. In

i

particular such decompositions of EA(r, d) always exist, and they may all be
obtained from any given one by replacing EA(rit dj by EA{rit dt) <8> Am*, where
2m, = 0.

Proof. If EA(r,d) ^ EA{rx,d^ <g> ... ® EA(rn,dn), then equating degrees
we find d = 2 rir2-ri-idiri+vrn = r 2 dJri- Conversely let (d1,...,dn)

i %
be any sequence of integers such that 2 {^ilri) = d/r. Since (r, d) = 1 it

i

follows that {r^di) = 1. Hence, since the ri are mutually prime, we may
apply Lemma 28 (n— 1) times and we get

^ ( r i X ) ® .» ® EA(rn,dn) ^ ^ ( r , d ) .
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The equation J (djr^ = d/r always has solutions (d^, this being the
decomposition of d/r into 'partial fractions'. Also if (d )̂ is one solution,
any other is of the form (d^+m^) where ^fmi = 0. Since

EA{ritdi+mtrt) a* EA(r{,dt) <g> Ami,

this establishes the last part of the lemma.
We proceed now to state our results in terms of the ring structure of S\

We consider the following sets:
stf\ the set of all {r, d} with r > 1, 0 < d < r,
stfQ: the subset of jrf with d = 0,
s/p: the subset of stf with r = pk, p a prime, h ^ 0, and (p, d) = 1.

We note that J / 0 n ja ,̂ = s#p n J ^ is the set consisting of the single element
{1,0} (^, # distinct primes).

If a = {r,d} E jtf we write ea = e^(r,d), and we denote by / a the A-
module generated by ea. In particular if a — {1,0}, ea = 1 (the unit of the
ring i) and <fa = A. We first reinterpret Theorem 10 to give the following:

LEMMA 30. Let a = {r, d} e stf, h = (r,d), r' = r/h. Then we have an
exact sequence of A-modules

0 -> A(r') -> A -^ ia -+ 0,
where ea(A) = Aea, a w ^ A ( r ' ) w ^ e irfeaZ o / A generated by the elements {I—I)
w i t h I a n r'-th root of u n i t y .

Proof. We have just to show that A(r') is the ideal which annihilates ea.
Let Aea = 0. Then we can write A uniquely in the form ]F Â  — 2 y-p
where Â  and ^ correspond to line-bundles. Then 2 \&a. — 2 lMieay an<^
so after re-ordering the suffixes we must have ^e^ = ^e^. Then, by
Theorem 10, /^ Af1 = lt is an r'th root of unity. But A = ]£ Ai(l—7<), and
so A 6 A(r'). Conversely every element of A(r') is of this form and so, by
Theorem 10, it annihilates eA.

Theorem 10 asserts that, as a A-module, #^= 2 ^v We consider now
the following sub-modules of <f:

Now if a G J^0, a = {r, 0}, ea = fr and / = 1. Hence 4 ^ A ® & (tensor
product of abelian groups), and so <o0 is a sub-ring of / (since «#" is a sub-
ring of / : Corollary to Lemma 17). Also Lemma 27 shows immediately
that $v is a sub-ring of / .

Let 77 be any infinite sequence; if i e IT we write i-\-l for the successor
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of i in IT. Let {A^, i e TT} be a sequence of rings such that Ai contains a fixed
ring A for all i. Then we may form the restricted infinite tensor product
over A of the Ai} and we denote it by (ĝ  Ai or A^. I t may be defined as
the direct limit (or union) of the finite tensor products

Bi = A1®AA2®A...®AAi

under the inclusions Bt -> Bt <g)A A c Bi+1. An is not only a A-module but
also a ring. If Ai = A for all but a finite number of indices (ilt..., ir, say),
then An ^ Aix (g)A ... ®A Air. Similarly if {A^} is any infinite sequence of
sets, and if Ai contains a fixed element 1 for all i, we may define An as
the direct limit (or union) of the finite products Bt = A1xA2x...xAi
under the injections Bt -» B{ X 1 c Bi+1. Again if Ai = 1 for all but a
finite number of indices {iv..., ir, say), then An ^ Aix X ... X Air.

In the present case we take TT to be the sequence consisting of 0 and all
primes p. Since SQ, £v contain A we obtain the ring iv. Since the sets
s/Q, srfp contain the fixed element {1, 0}, we obtain the set J ^ . If a e J ^ ,
then a = (ao,...,^,...) where all but a finite number of the a's = {1,0}.
Since a is itself an infinite sequence we may form Sa) and as we remarked
above Sa can be identified with the corresponding finite tensor product.
Thus ia = Aeo, where ea = ®feaj. By definition #0 = 2 < , 4 = 2 4c-

Hence i^ = ^ $a. On the other hand, / = 2 <C- Our object is to set

up an isomorphism between $n and S. First we shall define a commutative
diagram of maps (where Z denotes the integers)

Let a e s^, then a = {â ; i £ TT} where ĉ  = {1,0} for all but a finite number
of indices i. Let ĉ  = {ri}d^ and define integers r, d, m by

r = IT U> 2 (dilri) = d/r+m> 0 < d < r.
167T ieTT

Conversely, given integers r, d, with 0 < d < r these equations define the
{fytfj and m uniquely (cf. Lemma 29). We define <f>(o) = ({r,d},m), and
we let «/»: s/x Z -> stf be the natural projection. Then 6 = ip<f> defines a
(1-1) correspondence between <s/n and s#.

LEMMA 31. Let at £#„, </>(CT) = (<x,m)es/x Z. Then there is a A-modtde
isomorphism ^ s 3

<Pff:da-><£a
defined by <&a{ea) = amea, where a e A corresponds to the basic line-bundle A.

Proof. I t is sufficient to show that the ideals of A which annihilate ea
and ea are the same. Let a = {aj, ĉ  = K-,dJ, a = {r,d}, ht = (ritd^t
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h = (r, d), r' = r/h, r\ — rjht. Then by Lemma 30 the annihilator of ea
is A(r') and the annihilator of ea( is A(rJ). But ro= 1, r'p = rp, and from
the definition of <f> it follows that h = r0, r' = JJ rp. Hence the annihilator

p
of ea = ®^ eai is ®p A(rp), and since the rp are mutually prime this is
precisely A(r').

Let a es/n, a = {aj and let <f>(a) = (<x,m). Then Lemmas 24 and 29
give the formula ^ = „ ^ ( 7 )

On the other hand, we have
ea = ®i < V ( 8 )

H e n c e , i f w e d e f i n e a A - m o d u l e i s o m o r p h i s m O : in - » S b y 0 = 2 ^ f f »

(7) and (8) show that O preserves the ring structure and so is a ring iso-
morphisms We summarize our results in a theorem.

THEOREM 12. Let Sn denote the restricted infinite tensor product of the rings
<̂o> $p {over all primes p), and let s/^ denote the restricted product of the sets
s/0, s/p. Then as A-modules we have: $n= £ <C> $ — 2 ^<x- L&t 0: s/n->s/

be the (1-1) correspondence defined above. Then there are A-module iso-
morphisms ^ 3 3

and O = 2 ®o givzs & finy isomorphism S^ -> S.

In view of Theorem 12 the ring structure of i is completely determined
by the ring structure of the sub-rings #0, Sp. Since we have already deter-
mined the ring structure of & (Theorem 8) and so of / 0 ^ A <g> ^ we need
only consider the ring Sp. This problem is considered in the next section.

4. Ring structure of Sp

LEMMA 32. Let (r,d) = (r',d') = 1. Then EA{r,d) <g> EA(r',d') contains
a line-bundle as a direct summand if and only if V = r, d' = —d modr.

Proof. Suppose EJr, d) ® EA(r', d') ^ L® ... where L is a line-bundle.
Operate by EA(r, d)* ® on both sides. The left-hand side becomes

where the Li are the line-bundles of order dividing r (Lemma 22). The
right-hand side contains L <S> EA(r,d)* as a direct summand. Hence, for
some Lit L{ 0 ^ ( / > ^ ^ L ® EJr, *)*.

But EA(r,d)* g^EA{r,—d) (Corollary 2 to Lemma 24). Hence r' = r,
d' = — d modr. The converse is immediate by Lemma 22.
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LEMMA 33. Let {r,d) = {r',d') = 1. Then

EA(r, d) <g) EJr', d') g* F ® EJr", d"),
where F is a direct sum of line-bundles.

Proof. By Lemma 27 E = EJr, d) ® EJr', d') ^ J Eit where
Eietfir^di) and (r,,^) = 1. *

Now End 2? ^ EndjE^(r,cZ) ® End2^(r',d') decomposes completely into
a direct sum of line-bundles (Lemma 22). Hence each pair Ei ® E* must
decompose completely, and so by Lemma 32 rt = ri = r", say, and
di = dj modr". Put d" = dlt and let di = d^+T^r". Then

for some nne bundle Lt and

Bemark. In terms of the ring <§p Lemma 33 asserts the following: if
a, j3 £ s#v then eae^ = Aa^yey, where y estfp and Aâ y E A. We observe also
that the same proof shows the following: let e e $ be such that ee* e A,
then e = Ae' where e' G £{r',d') with (r',rf') = 1, and A e A.

THEOREM 13. Let I > k, (p,d) = (p,df) = 1. Then
EJpl,d) <8> ^ * , < n ^ 7P* (8> W , d " ) ,

wAere d" = pl-H'+d}and E(pl,d") e £{pl,d°).
Proof. By Lemmas 27 and 33 we know that

E =*= ^ ( ^ , d) (8) EJpk, d')^F® EA (pn, d0),
where n < I, and F is a direct sum of line-bundles. We first show that
n = 1. Suppose n < I— 1, then operate by EJpk, —d') (g), and we get

( 2 £<) ® J^fcP1,*) ^ ^ ® ^(P f c , - d f ) ® EJpn,dQ),
where the Li are the line-bundles of order dividing pk (Lemma 22). Now
by Lemma 27 the direct summands in the expansion of the right-hand side
all have dimension ^ pl~x. This gives a contradiction, and so n = I as
asserted. Then comparing degrees we get d" = pl~kd'-\-d. I t remains to
show that we can choose F = Ipk. But

End E s* (2 Lt) ® (2 I}) 3* (2 Lt) ® End 1*,
where the Z ,̂ i^ are the Kne-bundles of orders dividing pl, pk respectively.
If ^ = 2 A» * n e n ^ i <8> -̂ * are direct summands of End F and so of End E

(since one of the Li ^ 1). Thus
i/j <8> L* ̂  Li® L'j for some i, ^.



448 M. F. ATIYAH
Hence Lx ® L* is of order dividing pl. But (Corollary to Theorem 7) this
implies that f ^ P , » i,,\ r ^ JP I^I J»\

Lx <g) hjA {pl, d ) = A ® tiA (pl, d ).
H e n c e F® EA&,d") s Ipk®LX®EAtf,<P).
Since Z^ (g) JB^ (pl, d") e S(pl, d") this completes the proof.

The case I = k is covered by the next result.
Let A(r) denote the subgroup of A(X) (equivalence classes of line-bundles

over X) consisting of elements of order dividing r. Then we have
THEOEEM 14. Letpl~k = {pKd^d^), [dltp) = (d2>p) = 1. Then

EA{pl, dx) (8) EA(tft d2) g* Ipk ® (2 L^ ® E(p\ d3),
where the Lt are representatives for the cosets A.(pl)jh(pk), d3 = {dx-{-d2)/pl~k,

Proof. Vutd' = d3,d= —d2 in Theorem 13. Thend" = pl~kd3—d2 = dx

and (p,d) = (p,df) = 1. Now operate on the equation in Theorem 13 by
EA(pl, —d) ®, and we get

(2 L's) ® EA(pk, dz) a* Ipk ® EA{p\ d2) ® E(pl, dj, (9)

where the L's are the line-bundles of order dividing pl. Now if L's (g) Lf* is
of order dividing pk, we get (Corollary to Theorem 7)

Hence the left-hand side of (9) can be written in the form

where the Lt are representatives of A(pl)/A(pk). Hence, equating direct
summands in (10), we get

EA{p\ d2) ® E{p\ dx) s Ipk ® ( J LJ ® ^(i?&, ef8). (10)
Since E(pl, dx) ^ L ® EA(pl, dx) for some line-bundle Z of degree zero
(Lemma 26), (10) can be rewritten as

EA{p\ dx) <g> EA(pl, dx) ^ Ip* ® (2 Xr<) ® ^* ® ̂ ( ^ f c , ^3) J
since L* ® EA(pk,d3) e <o(pk,d3) the lemma is proved.

Theorems 13 and 14 give almost the complete structure of the ring $p.
The only point left is to identify the particular element §i${pl, d") occurring
in Theorem 13. Since we deduced Theorem 14 from Theorem 13 the corre-
sponding ambiguity in Theorem 14 would then disappear also. The obvious
conjecture is that this particular element is in fact the basic element
EA(pl, d"). If p y£ 2 this can be proved as follows. We regard X as an
abelian variety with A as zero. Let p: X ^-X be the automorphism of
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period two given by p(x) = —x. p induces an automorphism of the ring $,
which we denote by />*. Since A is a fixed point of />, we have

P^[eA(r>d)] = eA{r,d).

Now, in the situation of Theorem 13, suppose E(pl,d") ^ L <g) EA(pl,d").
Then applying p* to the equation of Theorem 13 we see that

P*(L) <g> EA(pl,d") ^ L ® EA(pl,d").

Hence p*(L) <g> L* is of order dividing pl (Corollary 1 to Lemma 24). Hence
p*(Lpl) ^ Lv\ But the only line-bundles of degree zero invariant under
p* are those of order dividing 2. Hence L is of order dividing 2pl. On the
other hand, taking determinants in the equation of Theorem 13 we see at
once that L is of order dividing ̂ +fc. lip ^ 2 these two condition^ together
imply that L is of order dividing pl, and so L <g> EA(pl, d") ̂  EA(p*, d").
We may therefore improve Theorems 13 and 14 as follows:

THEOKEM 13'. If p ^ 2 the bundle E(pl, d") occurring in Theorem 13 may
be replaced by EA{pl,d").

THEOREM 14'. Ifp ^ 2 the bundle E(pk, d3) occurring in Theorem 14 may
be replaced by EA{pk, dz).

The same results presumably hold iovp = 2, but a different proof would
be needed.

SOME A P P L I C A T I O N S

1. Effect of homomorphisms on /
Let N: X -+ X be the homomorphism of X onto itself (regarded as an

abelian variety with A as zero) defined by N(x) = nx, n a positive integer.
Then N induces a ring homomorphism N*: ${X) <- / (X) . The main
properties of N* are given by the following theorem.

THEOREM 15. (i) iV*/r = / r ;
(ii) if (r,d) = 1, then there exists an integer n such that NhA(r,d) decom-

poses completely, i.e. NhA(r,d) e A.
Proof, (i) Clearly NH = 1. Also the homomorphism

induced by N is an isomorphism. In fact it is easy to show in general that
this homomorphism is simply multiplication by deg(IV); if the characteristic
is zero (or more generally prime to N) it follows at once that

6388.3.7
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is an isomorphism. But F2 is defined by a non-trivial extension:

0 -> l -> F2 ~> 1 -> 0.
Hence by the remark we have just made the extension induced by N.from
this one will also be non-trivial. Hence N*(f2) = /2. If Sr denotes, as in
Part III, § 1, the rth symmetric product, we have N*Sr = 8rN*. But, by
Theorem 9,/ r = Sr~1{f2). Hence N*fr=fr.

(ii) Let e e £{r, d), (r, d) = 1, r > 1. Then ee* e A, and so
(N*e){N*e)* = N*{ee*) e A.

Hence, applying the remark following Lemma 33, we find Nh = Ae', where
e' e (f(r',d'), (r',d') = 1. We take n = r, N = B, and suppose if possible
that i2#e is indecomposable, i.e. r' = r. Then, equating degrees we find

r2d = rdeg\+d',
which contradicts (r',dr) = 1. Hence r' < r. If r' > 1 we repeat the
process, replacing e by e', and so on. After a finite number of steps the
process must terminate. Putting n = ...r'r, N = ...R'Bwe get Nh e A.

Theorem 15 (ii) is interesting because of the following fact. Let/: Y -*• X
be a regular map of a complex manifold Y onto a complex manifold X
such that

(i) X is an analytic quotient space of Y, i.e. if U is open in X, a function
g in U is regular if and only if g of is regular in/~1(C/),

(ii) for each xeX, /~1(«) is compact and connected.
Then it is easily shown (cf. (6)) that a vector bundle E over X is indecom-
posable if and only if f~x{E) is indecomposable. Theorem 15 (ii) shows
that the condition that/-1(a;) be connected is essential.

2. Coverings
By the results of Weil (10) we know (in the classical case) that a vector

bundle over a curve X arises from a representation of the fundamental
group if and only if all its indecomposable summands are of degree zero.
Moreover the corresponding covering is finite (i.e. algebraic) if and only if
the vector bundle corresponds to an algebraic element of the ring ${X),
i.e. an element satisfying a polynomial equation with integer coefficients.
When X is elliptic we see at once from our explicit determination of the
ring structure that the only algebraic elements of <f0 are of dimension one,
i.e. correspond to line-bundles. This is as it should be, since every covering
of X is known to be a homomorphism (X being regarded as an abelian
variety) and so corresponds to a divisor class (or line-bundle).

In the case of characteristic p the situation is different. In fact, let X
be an elliptic curve and letp = 2. Then / | = 2/2, so that/2 is an algebraic
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element of £. I t is easy to show that F2 corresponds to a covering of order 2
if and only if the Hasse invariant of X is non-zero. This suggests that the
ring structure of ${X) is not in itself sufficient to determine the algebraic
coverings of X. Presumably the Frobenius homomorphism x->xp must
also be taken into consideration.

3. The symmetric product
Let X be an algebraic curve of genus g (any characteristic). Then if

n > 2g—2 the symmetric product Sn(X) is well known to be a projective
bundle over the Picard variety of X, with fibre a projective space of
dimension n—g. If X is elliptic then it may be identified with its own Picard
variety. Hence, for n ^ 1, Sn(X) is a projective bundle over X with fibre
a projective space of dimension n— 1. Since we have explicitly determined
all such projective bundles (Theorem 11), it is natural to try to identify
Sn(X). It turns out (we omit the details) that Sn(X) is the indecomposable
projective bundle corresponding to the integer (n—1), i.e. it arises from a
vector bundle in <o(n,n—l). Slightly more can be proved. Let B be a
fixed divisor of degree (n—1), P e X, and consider the vector space £P{B-{-P)
of all rational functions <f> on X with div<£ ^ — (B-\-P). Then we can, in
a canonical manner, construct a vector bundle E over X whose fibre at P
is J2?(B-\-P). Sn(X) is then the projective bundle associated to E. The
fixed vector space ££{B) defines a trivial sub-bundle In_x of E, and we have
an exact sequence: 0 -> 7B_1 -> E -> [B] -> 0.

It can be shown that this extension is i^-complete, and this therefore
exhibits E as the indecomposable bundle with det E = [B] (unique up to
isomorphism).

This result raises the question of whether Sn(X) is indecomposable for
every curve X (and more generally whether the corresponding construct
for any algebraic variety X is indecomposable).

4. The sheaf
In the case of characteristic p we may consider the sheaf O1/p where O

is the sheaf of local rings. As a sheaf of O-modules this is locally free, and
of rank p (if X is a curve). Thus O1/p defines a vector bundle E over X.
In the case of an elliptic curve one can show the following:

(i) if the Hasse invariant of X is non-zero, then there exist just p line-
P

bundles Lt of order dividing p, and E ^.^ L{;

(ii) if the Hasse invariant of X is zero, then

Thus in case (i) E decomposes completely, while in (ii) E is indecomposable.
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