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0(x) = 3x}43x%; +5x3
cise 2.)

Q are2,—1, and —4.]

to an eigenvalue 3.

1

5. Q(x) = x} +xj — 10x1%2
6 Q(x)=3xf+9x§+8x1x2

(x) =—2 'l‘2 = .\'3 + 4x1X2
7. Let Q(x) = —2x] — X3
« in B? at which Q(x) is maximiz ;
| Hint: The eigenvalues of the matrix «

4+ 6x3x2+2x1X3 1+ 2x,x3 (See Exer-

What is the value of xTAx?

Xo

The maximum value of Q (x)

subject tox” x = lis 4.

7.4 THE SINGULAR VALUE DECOMPOSITION

— Bxpx — AN N — 8xa1X3.

i S
ymmetric Matrices and Quadratic Form

mmetric matrix A. Justify
o that m < A < M, where
[Hint: Find an X such that

12. let A be any eigen\falue. of a sy
" the statement made in thlS. sectio
m and M are defined as 1n 2).

A =x"Ax]
metric matrix, let M and.m denoteTthe
m vatues of the quadratic .form X"Ax,
rresponding unit ¢i genvectory
leulations show that given any
re is a unit yector X such thag
4+ aM for some_number
v —ouy, + \/(Xllh and

13. Let A beann X n‘ s.ym
maximum and minimus
where x'x = 1, and denf)te c.n
by vy and u,. The following ca
number ¢ between M and ni, the
¢ — x"Ax. Verify that = (1 —a)m

+ 4xoxy. Find a unit vector
sed, subject to x'x = 1.
f the quadratic form

let x =
= 2 2 7X2 . Tt tween 0 and 1. Then
8. Let 0(%) , i :1 ]R’3 at which Q(x) 1s mnxnmllz.ed, ahb:v = 1 and XTAX = 1.
Find a unnt_ryectollr ’[(Him- The siaenvalues of the matrix of sho
subject to X'x = 1. ) g ‘ . -
ic I¢ and —3.] a nstructions g
the quadratic form Q are 9 o) =T + 3x2 —2x1X2,  [M] In Exercises 14-17, follow the 1
. imum value © = /Xy 4 A 2-6.
9. F1n§ the maxi traint x2 + x2 = 1. (Do not go on to fin cises p—
subject to the cons VRV ed) + Sxixs - TExS T Txaxs
a vector where the maximum 1§ attained. 1 n 14. 3x1x2 ] 00— 2%
! — —3x2 + 5x5 — 2x1 %2, 3 r10%) Xq—6X2%3 —
10. Find the maximum value 20f Q§X)— 1 (Dolnot goontofind  15. 4x}—6x1%;—10%1%3 4%, X4+ 6X3%
" subj he constraint i ¥ = 21352 13x2 —4x, X2 —4X1 X3~ X1 X4 T OX3Xg
s he maximum is attained.) 16. —6x3—10x3—13X; 4
a vector where the m : ndin 30x,x3 + 3x2X4 + X3Xs
11. Suppose X is a unit eigenvector of a matrix A corresponding 17. x3%2 + 3x1X3 -+ 30x1%4 + 50%2X3
. Suppose X 15 ¢

SOLUTIONS TO PRACTICE PROBLEM_S _ _

i 31 It is easy to find the eigenvaluesy
1. The matrix of the quadratic form s A= |3

1 1/\/_2 1 1/\/—2 !‘ S: ﬂfﬂ",
4 al 3 an

[Uﬁ —l/ﬁ}.(Acn 101
desired change of variable is x = Py, where P = 1/ N “/_iadratic -
i i ) The new q OrmlL
¢ here is to forget to normalize the eigenvectors
it e
2. The maximum of Q(x), for a unit vecto i ] .
| i 1/ ﬂ] [A common incorrect answer 18 [ ol
the unit eigenvector [ 1) N

adratic form y”Dy instead of O (x).]

ried ot

i is attai
¢ X, is 4 and the maximum is at
bl

maximizes the qu

i anv i leresﬁ_,.
i ems | “tions 5.3 and 7.1 play a partin many ‘Iﬂ P
The d'!iigunulizat.il)ﬂ _ll:eelul C;: i\:g Eﬁ;:: pot all matrices cail] bc_l"tc,}l::cl:)lilLaL ;‘: il
pl'lc‘dlll'mﬁi Uﬂfﬂlmll‘{d Z;cr a factorization A = QDFP . is p(‘ ;{”m. ecompld
with D dl&\gﬂﬂﬂij 1:\?10riz;\tim1 of this type, called t%ua .w_ngu!a.’rl\ ah |
matrix 4 ! A specia ) ifl matrix factorizations in applied Imf’:nr a g | i
is one lut 1!16 nﬁ:{vﬁicudec(m'lpusilinn is based on the ft:l‘logulﬁg Zibqu]utc yaluedoF
S s . s mitated for rectangular matrices: SO el
LliilgONFi{iZﬁ‘-i()ll_‘ :l:;;ll‘:le\:;:f‘;:::;‘ i; ineasuri the amounts that A st etch
eigenvalues ol ¢

is to maximize the quadratic form x" (ATA)x subject to the
Theorem 6 in Section 7.3, the maximum value is the greates
Also, the maximum value is attained at a unit eigenvector of

The eigenvalues of A74 are A, = 360,4; = 90,and A5 =
vectors are, respectively,

7.4 The Singular Value Decomposition 447

certain vectors (the eigenvectors). If Ax = Ax and x|l = 1, then

IAX] = NIAx]| = [A] Ix]| = || M
If A is the eigenvalue with the greatest magnitude, then a corresponding unit eigenvee-
tor vy identifies a direction in which the stretching effect of A is greatest. That is, the
length of Ax is maximized when x = v, and [[Av,|| = |A

vi and |[A;] has an analogue for rectangular m
decomposition.

1]- by (1). This description of
atrices that will lead to the singular value

EXAMPLE 1 154 = g 1; _j],lhen the linear transformation x ~ Ax maps
the unit sphere {x : ||x|| = 1} in R3 onto an ellipse in B2, shown in Figure 1. Find a unit

vector X at which the length || Ax|| is maximized, and compute this maximum length.

A3

Multiplication
by :

FIGURE 1 A transformation from R3 to R2.
SOLUTION The quantity || Ax||? is maximized at the same x that maximizes
| Ax||? is easier to study. Observe that

I4x)? = (4%)7 (Ax) = x"4TAx = x"(AT4)x
Also, A™A is a symmetric matrix, since (ATA)T = ATATT = 4

| Ax||, and

"A. So the problem now
constraint ||x|| = 1. By
t eigenvalue A, of A74.
A4 corresponding to A;.
For the matrix A4 in this example,

4 8

80 100 40
AA=|11 7 [4 B 14}: 100 170 140
4 — L8 7 2

40 140 200

0. Corresponding unit eigen-

1/3 —2/3 2/3
vi=12/31, va=|-1/3|, vi=|-2/3
2/3 2/3 1/3

The maximum value of || Ax|)? is 360, attained when x is the unit vector v;. The vector
Av/ is a point on the ellipse in Figure 1 farthest from the origin, namely,

1/3
w=fi 5 Bz =[]

For ||x| = 1, the maximum value of [ Ax| is | Avi] = /360 = 64/10. ||
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+ sphere in R? is related to the Thus {Av....,. Av, | is an orthogonal set. Furthermore, since the lengths of the vec-
»n the unit spher :

: uggests that the effect of A ¢ - ; he transformation

Example 1 suggests ic behavior of the

tors Avy, ..., Av, are the singular values of A, and since there are r nonzero singular
dratic form x7 (A7A)x. In fact, the entire geun'uellru : values, Av; # 0 if and only if | <i <r. So Av,...... Av, are linearly independent
quadrd R e tic f as we shall see. cetors, and tl 1 A. Fing or ¢ in Col A—s: = AXx—
: . ic form, vectors, and they are in Col A. Finally, for any y in Col 4 —say,y = Ax—we
| % 1> Ax is captured by this quadra y y vy ay.y

can write
X=c1vy + -+ c,v,,and ‘
2 |
The Singular Values of an m x n Matrix H Y= AX = ClAVI + - ¢ AV, + o1 AVeay + o+ Ay, |
© . ' be orthogonally diagonalized, =CAvi+ o+ AV, 40+ + 0 ‘
atrix. Then A”A is symmetric and can be ort ors of ATA, and !
e Ko ort.hounrnml basis for R” consisting of e'ge“.‘"ft ’ Thus y is in Span {Av,..., Av,}, which shows that {Avi, ..., Av,} is an (orthogonal)
o .),tv”b} tli:reltssochtcd cigenvalues of A7A. Then, for 1 =i =7, basis for Col A. Hence rank A = dimCol 4 = r. i
let Ay, ..., Ay DE k - :
[ Avi |2 = (Av)TAv; = v] ATAV; - || — NUMERICAL NOTE —mm™———
= v,-T (Aivi) Since v; is an eigeivector o ) In'some cases, the rank of A may be very sensitive to small changes in the entries
: is ¢ i tor
=\ Since v; is a unit vec

of A. The obvious method of counting the number of pivot columns in A does

not work well if 4 is row reduced by a computer. Roundoff error often creates an
So the eigenvalues of A ranged so that echelon form with full rank.
i lues are arrange
assume that the eigenva

ing, i ry, we m
T4 are all nonnegative. By renumbering, if necessary, ay

[n practice, the most reliable way to estimate the rank of a large matrix A
A=Az = A 0 is to count the number of nonzero singular values. In this case, extremely small
nonzero singular values are assumed to be zero for all practical purposes, and the

effective rank of the matrix is the number obtained by counting the remaining
. - nonzero singular values.!
s of A are the lengths of the vectors AVy, ..., AV, £

- = e o ed by
I., A }:uWﬂh S C t A M

[he sim '“ld’ Val S Ui e he -’L]leli,‘ ”K)t‘! OI lht. e1g 1c ] A LI(:]<l()1 3

(9] iy ﬂlld lliEy are aIla”I:Ld 1 LlBLiCa“-. “}.g llIdC] . [lltll 18; |); = A/ A; tul 1 1

I o n

By equation (2), the singular value

atues of ATA are

EXAMPLE 2 Let A be the matrix in Example 1. Since the eigenv
360, 90, and 0, the singular values of A are

V360 = 6+/10, o, = +/90 =34/10, 03=0

i imum of || Ax|| over all unit i
) snoular value of A is the maximu ‘ - "
From Example 1, th; ﬁrStizI:t%al.lined at the unit eigenvector vy . Theorem 7 31 Sei(t:t\tzztzm - i i
bk fmilihe 2’2’;131 ;nmgular value of A is the maximum of || Ax|| over all un :
shows that the s

nt 12eny '(01")
hat are or tno, Ollal tov and ﬂllS IIlaXiIlluIll 1S attal"ed at tlle SeC()[ld u t e1gen ec
t g . o

The Singular Value Decomposition

gy =

The decomposition of A involves an m x n “diagonal” matrix X of the form

i —r columns
%, ' in Example 1, where D is an r x r diagonal matrix for some 7 not exceeding the smaller of m and .
v, (Exercise 22). For the v Yy . (If r equals m or n or both, some or all of the zero matrices do not appear.)
PR TRV | (o [ ]
Y, Av, = [ ] ) ;ﬁ ~9 THEOREM 10 The Singular Value Decomposition

x| . st as Avy is on the mj Let A be an m x n matrix with rank r. Then there exists an m x » matrix 3 as

This point is on the minor axis of the ellipse 1n Flg‘j;e L, tj;]ls 1§ngthsl of the majora in (3) for which the diagonal entries in D are the first r singular values of A4,
is pot . of A are the i
A axis. (See Figure 2.) The first two singular values

0y 203 2+ >0, >0, and there exist an m x m orthogonal matrix U and an

minor semiaxes of the ellipse. n x n orthogonal matrix V such that

FIGURE 2

o)
as the. ex

Ihe 'aCt that AV a][d AVZ arc ()Ith() ()]lal 1 [ 1gure 2 no aCCldeIlt,
] g n g 18

theorem shows.

A=UxvT

Any factorization A = USVT, with U and V orthogonal, X as in (3), and positive
' p ‘sting of eigenvee diagonal entries in D, is called a singular value decomposition (or SVD) of A. The
{v v, } is an orthonormal basis of R gors L % ofy Ay = L matrices U and V are not uniquely determined by A, but the diagonal entries of X
THEOREM 2 ill;ﬂiposfang{c,ci .sé)-th;t the corresponding eigenvalues ({)i1 A'Asa IA)‘/' ) isd_an-ﬁ'- 0 are necessarily the singular values of A. See Exercise 19. The columns of I/ in such a
,ar 5 Then A AT r
o singular values.
and suppose A has r nonzer

decomposition are called left singular vectors of A, and the columns of V are called
onal basis for Col A, and rank A = 7 right singular vectors of A.

Vn general, rank estimation is not sitnple problem. Fora discussion of the subtle issues involved, see

Philip E. Gill, Waller Murray, and Margaret H. Wright. Numerical Linear Algebra and Optimization, vol. 1
(Redwood City, CA; Addison-Wesley, 1991), Sec. 5.8,

PROOF Because v; and AV, are orthogonal for i 7,

=v'(;v;))=0
(Av)T (Av)) = v] ATV} =i @;v;)



. 7.4 The Singular Value Decomposition 421
420 CHAPTER 7 Symmetric Matrices and Quadratic Forms

PROOF Let A, and v; be as in Theorem 9, so that {Av, . .., ,_clv,.} is an orthogona] basis The square roots of the eigenvalues are the singular values:
for Col A. Normalize each Av; to obtain an orthonormal basis {uy, ..., u,}, where 01 =6v10, o, =310, o3 =0
1 AV = — Ay The nonzero singular values are the diagonal entries of D. The matrix X is the same
u = |l Av; || S o size as A, with D in its upper left corner and with 0’s elsewhere.

6410 0 6410 0 0
and . D = =[D 0]=
Av; = oyu; (I<iz<vr) ' [ 0 3\/10]’ =1 ] [ 0 3/10 O:I

Step 3. Construct U, When A has rank r, the first r columns of U are the normalized
U=[u u -+ u,] and V=[v; vs - v, ] vectors obtained from Avy, ..., Av,, Ip this example, A has two nonzero singular val-
. ues, so rank 4 = 2. Recall from equation (2) and the paragraph before Example 2 that

By construction, U and V' are orthogonal matrices. Also, from (4), IlAvi|| = o and | Av3]| = 0. Thus
AV = 149 Trgd%ald, o, Ml slow = Goy 0 e 0] [: J

o m
Now extend {uy, ..., u,} to an orthonormal basis {uy, ..., n,} of R”, and let

u ! Av 1 [ 18] 3/4/10
I 1= — 1= E]
Let D be the diagonal matrix with diagonal entries o1, ..., 0y, and let T be as o 6710| 6 1/v/10

(3) above. Then " ~]—'/1v o 3]_ 1/4/10
o1 T o 2—3‘/@ =9] | =3/V10

) Note that {u,, Uz} is already a basis for B2, Thus no additional vectors are needed for
UZ=[u w - uy,] P Usand U = [u; w, . The singular value decomposition of A is

A [3/@ me [wm 0 0] 1/32/3 273

1/3/10 ~3/4/T0 0 3 o) |27 - 75

1 0 4
U 5 .

= [01U1 AR OFY | P 0 - 0]

= AV :
Since V is an orthogonal matrix, USVT = AVVT = 4. -
EXAMPLE 4 Finda singular value decompositionof A = | —2 2

decomposition. An efficient and numerically stable algorithm for this decomposiflon 2 2

would use a different approach. See the Numerical Note at the end of the section.

SOLUTION First, compute A7 = [_g _EJ The eigenvalues of 474 are 18 and 0,

EXAMPLE 3 Use the results of Examples 1 and 2 to construct a singular yall&

. 4 11 14
decomposition of 4 = 8 7 o

V_[ 1/\/§J V__[l/ﬁ
1= . Vy =
—1//2 1/+/2
i ivided into three steps.

SOLUTION A construction can be divide Doty s

with corresponding unit eigenvectors

. . 1

] ] lization of ATA. That is, find the eigenvi :

. D Step 1. Find an orthogonal diagona ; i e
g?;noputmg an SV AA and a corresponding orthonormal set of eigenvectors. If A had only two ¢ _ Somoor] . e -

. : X s
the calculations could be done by hand. Larger matrices usually reql(ljlrs N ’g:;; V2 1/v2
. . inE
gram.? However, for the matrix A here, the eigendata for A°A are provide The singular values are 01 = /18 = 34/2 and 02 = 0. Since there is only one nonzero

singular value, the “matrix” D may be written as a single number. That is, D = 3V2.
The matrix X is the same size as A, with D in its upper left corner:

Step 2. Set up V and X. Arrange the eigenvalues of {154 in de.crggts)ingom;i:g 0.0
ample 1, the eigenvalues are already listed in der.:rea.f;.mg Qrder. ,tors, o4,
corresponding unit eigenvectors, v, v, and v, are the right singular vec D o 33 o
Example 1, construct YX={0 0= 0 0
1/3 =2/3 2/3 0 o 0 0
V=[vi vo v5]1=1|2/3 —1/3 _?g To construct U, first construct Av; and Av,:
2/3  2/3 o

i v _‘4/\/5 i AV2 =
instance, ¢t
2 See the Study Guide for software and graphing calculator comn}ands. MATLAB, for ins A 4/ ﬁ
both the eigenvalues and the eigenvectors with one command, eig.
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AS a C]leck on the Calculatl()]ls VeIlly tllat AV =01 = 3 2. ()f course, AVZ = 0

Recall from Theorem 3 in Section 6.1 that (Col Ayt = Nul A7 Hence L
is
X, because || Av,|| = o2 = 0. The only column found for U so far i e @
1/3
1 Aye = _2§3 is an orthonormal basis for Nul A7 .
K\ u = 37‘5 L 2/3 Since [|Avi[| = o; for | =i =n,and o0; is 0 if and only if i > r, the vectors
: R T span a subspace of Nul A of dimension n — r. By the Rank Theorem '
. ) 1 basis for Vi1, » ¥y Span a su I y )
M tending the set {u; } to an orthonorma . el i
\ ’//] ETothgFEaIIsTo- Udattre fglrltrlll((l)g(})/nea); Ellllit végctors u; and u; that are orthogonal to u , dimNul A = n — yank A, It follows that
: 0
| 43 R3. In this case, we need tw

i Ty = hich is equivalent to the equatiop
(See Figure 3.) Bach vector must satisfy uj x 0, whic q

V "+ ce, vV }
. . ) | { " .y
i i tof t -S BqUal]Ol‘I 18 |
. A baSlS fOI‘ the SOlutlon S€

(7 |
is an orthonormal basis for Nul 4, by the Basis Theorem (in Section 4.5). .
2 —2 | From (5) and (6), the orthogonal complement of Nul A7 is Col A4. Interchanging A
wp=|1], wy= X and AT, note that (NulA)*+ = Col AT = Row 4. Hence, from (7),
0
Check that w; and w, are each orthogonal to u;.) Apply the Gram-—Schmidt procesy vi,ov ®)
Ewiglcnormalizations) to {w, w2}, and obtain is an orthonormal basis for Row A.
3 _9 /JZE Figure 4 summarizes (5)—(8), but shows the orthogonal basis {owy,. .. , o1, } for
| ?; Ve wm=| 4/v55 Col 4 instead of the normal
Uy = ,
0 5/+/45

ized basis, to remind you that Av;
for the four fundamental subspaces
particularly in constrained optimizati

=ow forl <i<rp,

Explicit orthonormal bases determined by A are

useful in some calculations,

Finally,set U = [u; uy uy],take X and V7T from above, and write
inally, =

on problems, n
—2//45 342 0 1/4/2 —1/42 The fundamental subspaces in et
. N /3 2/5 - -
FIGUR A= _é 2| =|-2/3 15 4/VE || 0 8 V2 13 Example 4. ok L
A -2 2/3 0 5//45 0 n

Applications of the Singular Value Decomposition

] ]le S \% D 18 ()tte]l uSed to estiny 1ate the I‘ank Of a matI‘IX, as nOted ab() ve. Se VEY al ()theI =
Ilcal appllcatIOI 1S are dCSCI‘lbed bIleﬂ y belO W, aIld an appllcatl()ll to IIIlage ]" ULESSI"E

me

18 p] eSCIlted m SeCthIl ; .5.

EXAMPLE 5 (The Condition Number) MOSthnur?ﬁélcsa\l/];algfl‘ﬂjtl?sni Sl:c;/.orllyﬁzg
i i en

equation Ax = b arz ?ncrlell;agcl)engf alzgesstl?;gvtvhs of vectors or angles betwelertli (\;::S :
ey m'atrlces' 6.2). Any possible instabilities in numerical calcu ; .
gThe9l‘em.7 in Isfet(;ltéosriln .ulalr values of A are extremely large or small, roun ; g
identified i Z'. bl bu;g an error analysis is aided by knowing the entries md o
- almos't meV‘Ita ?ble n X n matrix, then the ratio oy /0, of the larges.t aglec»ﬂ g

 IfAisan 1nV.erlS the condition number of 4. Exercises 41-43 mf e
singular valuelsl gl\(,;dition number affects the sensitivity of a solution ’?Of o
showed how t er; in the entries of A. (Actually, a “con(.imor} numberd o -
Chanslftse((ioirne;:\)/eral ways, but the definition given here is widely use
com

Ax =b.)

FIGURE 4 The four fundamenta) subspaces and the
action of 4.

The four fundamental subspaces and the concept of singular values provide the final
statements of the Invertible Matrix Theorem. (Recall that statements about A7 have been
omitted from the theorem, to avoid nearly doubling the number of statements.) The other
statements were given in Sections 23,29,32.4.6, and 5.2

THEOREM

The Invertible Matrix Theorem (concluded)

Let A be an n x n matrix. Then th
the statement that A is an invertibl

¢ following statements are each equivalent to

T v € matrix.
P F i vD for an
EXAMPLE 6 (Bases for Fundamental Subspaces) Given an S

u. (ColA)* = {0}.
. inoular Ve
ix A, letu u,, be the left singular vectors, vy, ..., vy the {;ihgizrﬁ 9, v. (Nuld)t = R,
----- n
m"g“x - ea lthe sinéular values, and let r be the rank of A, By The w. Row 4 = R",
and Gy, ..., n
{ll],---,ur}

g ar Values.
. . C
1 n th Orm. 1 S1 ro sin lll
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EXAMPLE 7 (Reduced SVD and the Pseudoinverse of A) When 3. contains Tows or Moler, C. B., and D. Morrison,

. “Singular Value Analysis of Cryptograms.” Amer. Math. A0
mpact decomposition of A is possible. Using the notation Moler.C. .4 D Morion,
f zeros, a more ¢Q 08 : ' i .
Cos:lzrlliz;:d Zgove let r = rank A, and partition U and V into submatrices whose first Strang, Gilbert, Linear Algebra and Its Applications, 4th ed. (Belmont, CA: Brooks/
le)?ocks contain r columns: s, o
U=[U U], wherelU, = [up -+ u]

Watkins, David S., Fundamentals of Matrix Computations (New York: Wiley, 1991),
V=[V, Vaer], whereV,=[vi - V/] pp- 390-398, 409421,

y — T

¥ > m-r n—p
] ]le]l D 1S M X ¥ and [’, 1Sn Xr. (I() Slmpllf llotatl()ll we COIlSldCI D O [’
even th()ugh one ()f them may haVe no C()lumns .) Then paI’tlthned matrix multlp] icat on

| PRACTICE PROBLEMS

shows that D 0 VrT UV o) 1. Given a singular value decomposition, 4 = UXVT, find an SVD of AT How are
A= [U,- Um—r] =l 4

0LV the singular values of A and A related?
O n—r | | | | |
2. F the SV how that : e
. is called a reduced singular value decomposition of A. Since Qors SIC?I/ ,:h :t ,114 Irljtrzlx g}l(lffr 2;’ S D to show that there is a1 X n or T L
Thisd'facmnTatl(t)rrie(;fi;1 S (;ieenonzero D is invertible. The following matrix is called
the diagonal en ,

P e inverse) of A: Remark: Practice Problem 2 establishes that for any n x n matrix A, the matrices AAT
the pseudoinverse (also, the Moore-Penros ) : and A”A are orthogonally similar.
—1ysT
A+ B V)D 1Ur

Supplementary Exercises 1214 at the end of the chapter explore some of the properties
upp

he reduced singular value decomposition and the pseudoinverse. - 1 — e D e S
Rf g Find the singular values of the matrices in Exercises 1—4. 40 =78 47 7.10 0 0
i - = sell- A= 37 —-.33 -.87 0 3.10 0
EXAMPLE 8 (Least-Squares Solution) Given the equation Ax = b, use the pseu- 1 [1 0] , [_3 0] b ; ; !
doinverse of A in (10) to define "0 -3 0 o0

x=Atb=V,D"'UDb

2 3 3 0
o [2 7] H
Find an SVD of each matrix in Exercises 5-12. [Hint: In Exer-
—1/3 2/3 2/3 Use this decomposition of A, with no calculations, to
lse 11, one choice for U is 2/3 —1/3  2/3 |.In Exer

write a basis for Col A and a basis for Nul A. [Hint: First
2/3  2/3 —1/3 write the columns of V]

30 —.51 —.81
x (.76 .64 —.12
58 —.58 .58

What is the rank of 4?

Then, from the SVD in (9),
A% = (U, DV)(V, DT'Ub)
= U,‘DD_IUrTb Because V'V, = 1/,
=UUD

=

S

. Col A. (Set 1/4/6 16. Repeat Exercise 15 for the following SVD of a 3 x4
fi (5) that U, UTb is the orthogonal projection b of b onto .thlS' ! Uise 12, one column of U can be —2/+4/6 1.1 matrix A:
It follows from () '\ Thus & is a least-squares solution of Ax = b. In fact, o V6
Theorem 10 in Section 6.3.) Thus X is a least-sq lutions of Ax = b. See 9t||)piemcnl B 1/4/6 —.86 —.11 —.50 12.48 0 0 0
-squares solution =D. ¥ 1 = -
hagthsnallentlongiliemongiaioast 2L % -2 0 -3 0 ! T . - A g 0
Exercise 14. 0 ¢ 6. 0 -2
— = o ‘i -2 .66 —03 —35 66
—_— m— ! 7 -1 4 6
— NUMERICAL NOTE ' andl. 7, ,: ] 8. [ :, —13 —90 —39 —.13
Examples 1—4 and the exercises illustrate the concept of singular Yallfz;AT’ i 2 2 0 4 X1 65 08 —16 _3
slfgage}s)t how to perform calculations by hand. In practice, the Com?Fat}[ﬁe entries: [3 3 71 == G =54 s
. . in T
should be avoided, since any errors in the entries of A are sqqarGUIar yalues and’ (1) 0 10. 15 5 In Exercises 17-24, A is an m x n matrix with a sin gular value
of ATA. There exist fast iterative methods that produce the sing . 1 0 0 decomposition A = UXVT where U is an m % m orthogonal
i ula'r vectors of A accurately to many decimal places. -3 1 1 1 matrix, X is an m x n “diagonal”™ matrix with r positive entries
sing S ~ 6 2 12. 1 and no negative entries, and V is an n x n orthogonal matrix.
S e - -1 1 Justify each answer.

Further Reading -
Horn, Roger A., and Charles R. Johnson, Matrix Analysis (Cambridge: B
University Press, 1990).

ion. Matlié
Long, Cliff, “Visualization of Matrix Singular Value Decomposition.
Magazine 56 (1983), pp. 161-167.

id th A8 2 P s o 17. Show that if 4 is square, then [det A] is the product of the
eSVDof A = 2 3 o [Hint: Work with AT ) singular values of A.

d a unit vector x at which Ax has maximum

bExerCise 7, fin 18. Suppose 4 is square and invertible. Find a singular value
Nath,

decomposition of 4™,

lbpose the factorization below is an SVD of a matrix A,

19. Show that the columns of V are eigenvectors of A4, the
' the entries in U and V rounded to two decimal places,

columns of U are eigenvectors of AAT, and the diagonal
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i i i x n “diagonal”
entries of X are the singular values of A. [Hint: Use the SVD matrfx for T relative to B and C is an m x 1 g |
to compute A4 and AAT ] matrix.

20. Show that if P is an orthogonal m x m matrix, then PA has

[M] Compute an SVD of each matrix in Exercises 26 and 27.
the same singular values as A.

Report the final matrix entries accurate to two decimal places. Use
21. Justify the statement in Example 2 that the second singular the method_of Examples 3 and 4.
' value of a matrix A is the maximum of ||Ax|| as x varies 18 13 -4 4
over all unit vectors orthogonal to v, with v, a right singular B 2 19 —4 2
vector corresponding to the first singular value of A. [Hint:  26. A = 14 11 —12 3
Use Theorem 7 in Section 7.3.] | 2 21 4 8

22. Show that if A is an n x n positive definite matrix, then an
orthogonal diagonalization A = PDPT is a singular value
decomposition of A. 27. A=
23, LetU = [u, u, Jand V = [ v,
u; and v; are as in Theorem 10. Show that

6 -8 -4 5 —4
2 7 -5 —6 4
0 -1 -8 2 2
v, |, where the -1 -2 4 4 -8

28. [M] Compute the singular values of the 4 x.4. matrix in
Exercise 9 in Section 2.3, and compute the condition numbey
|
24. Using the notation of Exercise 23, show that ATu; = g;v; 01/04.
forl < j <r =rank A. 29

T T
A=auwvl +omv! +. 4o,y

. [M] Compute the singular values of the 5 x 5.1T1atrix in
Exercise 10 in Section 2.3, and compute the condition num-
ber o, /05s. ‘

25, Let T : R" — R" be a linear transformation. Describe how
to find a basis 8 for R" and a basis C for R” such that the

i SOLUTIONS TO PRACTICE PROBLEMS

—

1. fA=UXVT, where T ism x n,then AT = (VT)TETUZ = VETUT‘.‘Thls is T:
SVD of AT because V and U are orthogonal matrices and X isann xm leagonail |
matrix. Since ¥ and X7 have the same nonzero diagonal entrl;as. ,Aand A have:i l. a_j
same nonzero singular values. [Note: If A is 2 x n, then A.A is only 2 >;1 T2A and ifs’
eigenvalues may be easier to compute (by hand) than the eigenvalues of 1

Use the SVD to write A = USZ VT, where U and V are n x n or;hogonal ll;au_'icgg;
and ¥ is an n X n diagonal matrix. Notice that UTU = I = V |4 and.E - hg'
since U and V are orthogonal matrices and ¥ is a diagonal matrix. Substituting the:
SVD for 4 into AA” and A”A results in

N

TrsT _ 27T
AAT =UusvTwzyHT = vzvTvsTuT =uss’uT = us?U’,

and

21T
ATaA=wzvDTusvT =veTuTusvT = vy = vy’

Let Q = VUT . Then B
2 =
QTUAT Ao =wvunHTwztvTYywuTy=uvTvsvTvuT =Us’U

7.5 APPLICATIONS TO IMAGE PROCESSING AND STATISTICS

RE 2

£ multi ittf: P!”l of spectral data for a
The satellite photographs in this chapter’s introductign provide an examtpllil (i)n the, Mage,
mensional, or multivariate, data— information organized so tha.t each .da l'ls o
set is identified with a point (vector) in R”. The main goal of this sect10r1] I1l i
technique, called principal component analysis, used to .analyzc? su'ch mln - e
The calculations will illustrate the use of orthogonal diagonalization a

value decomposition.
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Principal component analysis can be applied to any
measurements made on a collection of objects or individu
chemical process that produces a plastic materi
are taken of the material produced, and each sam
tests, such as melting point, density, ductility, tensi
report for cach sample is a vector in R®. a
matrix, called the matrix of observations.

Loosely speaking. we can say that the process control data are ¢

ight-dimensional.
The next two examples describe data

that can be visualized graphically.
EXAMPLE 1 An example of two-dimensional data is given by a set of weights and
heights of N college students. Let X denote the observation vector in 2 that lists the
weight and height of the jth student. If w denotes weight and /; h

eight, then the matrix
of observations has the form

W [1R5] LT iy

h hy oo Dy

' 4
i i !
X, X5 Xy
The set of observation vectors can be visualized as a two-dimensional seatter plot. See

Figure |, &

h

] W

FIGURE 1 A scatter plot of observation
vectors X, ., ., X,\- .

EXAMPLE 2 The first three photographs of Railroad Valley, Nevada, shown in the
chapter introduction can be viewed as one image of the region, with rree
conponents, because simultaneous measurements
separate wavelengths. Each photograph give
physical region. For instance, the first pixel in the upper-left corner of each photograph
corresponds (o the same place on the ground (about 30 meters by 30 meters). To each
pixel there corresponds an observation vector in B that lists the signal intensities for
that pixel in the three spectral bands.
Typically, the image is 2000 x 2000 pixels, so there
image. The data for the image form
(with columns arranged in any conve
character of the data refe
dimension

spectral
of the region were made at three
s different information about the same

are 4 million pixels in the
a matrix with 3 rows and 4 million columns
nient order). In this case, the “multidimensional”
18 Lo the three spectral dimensions rathe
s that naturally belong to any photograph. The d
cluster of 4 million points in [, perhaps as in Figure 2.

r than the two sparial
ata can be visualized as a
i}

Mean and Covariance

To prepare for principal component analysis, let [ X,

Xy ]bea p x N matrix of
observations, such as described above. The sample

mean, M, of the observation vectors

data that consist of lists of
als. For instance, consider a
al. To monitor the process, 300 samples
ple is subjected to a battery of eight
le strength, and so on. The laboratory
nd the set of such vectors forms an 8 x 300




FIGURE 3

Weight-height data in
mean-deviation form.
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Xi,..., Xy is given by |
M= (X1 4+ Xp)

For the data in Figure 1, the sample mean is the point in the “center” of the scatter plot,
Fork=1,...,N, let A
X, =Xy —M

The columns of the p x N matrix
B=[X X, - Xy]

have a zero sample mean, and B is said to be in mean-deYiation form. When Lhe fsamp.le
mean is subtracted from the data in Figure 1, the resulting scatter plot has the form ip
Figure 3. . '
¢ The (sample) covariance matrix is the p x p matrix S defined by
1 T
= ——BB
S N -1

Since any matrix of the form BB is positive semidefinite, so is S. (See Exercise 25 in
Section 7.2 with B and BT interchanged.)

EXAMPLE 3 Three measurements are made on each of four individuals in a random
sample from a population. The observation vectors are

1 4 7 8
X1 = 2 . X2 = 2 . X3 = 8 . X4 = 4
1 13 1 5

Compute the sample mean and the covariance matrix.

SOLUTION The sample mean is

] 5
NBRBRNERIEENE

M=- 2 |+ 214+ 8 |+ = - =
A\ 13 1 s|) 4|2 5

Subtract the sample mean from X, ..., X, to obtain

—4 [ —1 2 . 3
X,=| 2. Xo=|-2|, X3=| 4. X4=1]0
—4 8 —4 0

B

The sample covariance matrix is

i -4 -1 2 3 1 -2 8
|4 8 =4 0] 5 5

L[30
=-|18 24 24|=| 6 8 -8
3 0 —24 96 0 -8 32

-
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" . . y N |
To discuss the entries in § = [si7], let X represent a vector that varies over the |

set of observation vectors and denote the coordinates of X by xy,..... ¥p. Then xy,

for example, is a scalar that varies over

the set of first coordinates of X P Xu. For
J=1..., P, the diagonal entry s, in S is called the variance of x;,

The variance of x j measures the spread of the values of x ;. (See Exercise 13.) In
Example 3, the variance of xy is 10 and the variance of X3 is 32. The fact that 32 is more
than 10 indicates that the set of third entries in the response vectors contains a wider ‘
spread of values than the set of first entries.

The total variance of the data is the sum o
general, the sum of the diagonal entries of a s
matrix, written tr(S). Thus

f the variances on the diagonal of S. In '
quare matrix S is called the trace of the

{total variance} = tr(.S)

The entry s;; in S for i # Jisc

in Example 3, the covariance betweer
Statisticians say that

alled the covariance of X; and x ;. Observe that
1x7 and Xy is 0 because the (1,3)-entry in § is 0,
Xy and x5 are uncorrelated. Analysis of the multivariate data in |
Xy is greatly simplified when most or all of the variables x, . . . » X'p are uncor-
related, that is, when the covariance matrix of X, ..., Xy is diagonal or nearly diagonal.

Principal Component Analysis

For simplicity, assume that the matrix [ X

Xy ] is already in mean-deviation
form. The goal of principal component analysis is

to find an orthogonal p x P matrix
P =u u, | that determines a change of variable, X = PY,or
X i J
X2 Y2
=[u uw - u, ||
Xp Yp

with the property that the new variables yy, .
order of decreasing variance.

The orthogonal change of variable X — PY means th
receives a “new name,” Yy ,such that X, = PY,.Notice t
of X with respect to the columns of Poand Y, = p—

Itis not difficult to verify that for any orthogonal P, the covariance matrix of
Yi.....Yy is PTSP (Exercise 11). So the desired orthogonal matrix P is one that
makes P7SpP diagonal. Let D be a diagonal matrix with the eigenvalues A, .. .. An
of S on the diagonal, arranged so that A, > 1, > ... =A, =0, and let P be an
orthogonal matrix whose columns are the corresponding unit eigenvectors u;
Then § = PDP" and PSP = p.

The uniteigenvectorsuy, . . ., u, of the covariance matrix S
components of the data (in the matrix ol observations), The firs
is the eigenvector corresponding to the largest eigenvalue of
component is the eigenvector corresponding to the second largest ei genvalue, and so on.

The first principal component u; determines the new variable vy in the following

way. Let ¢, ... ¢, be the entries in ;. Since ul is the first row of P7 . the equation
Y = P7X shows that

++» Yp are uncorrelated and are arranged in

at each observation vector X
hat Y, is the coordinate vector
lX;;:P"Xk fork = V., N.

are called the principal
t principal component
S, the second principal

V=X =eixi + x4 ot cpx,
Thus y, is a linear combin
the eigenvector u; as wei
SO on.

ation of the original variables X1, ..., Xp, using the entries in
ghts. In a similar fashion, u, determines the variable y,, and
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EXAMPLE 4 The initial data for the multispectral image of Railroad \./.all.e)lz
(Example 2) consisted of 4 million vectors in R3. The associated covariance matrix is

2382.78  2611.84 2136.20
S = 2611.84 3106.47 2553.90
2136.20  2553.90  2650.71

Find the principal components of the data, and list the new variable determined by the
first principal component.

SOLUTION The eigenvalues of S and the associated principal components (the unit
eigenvectors) are

A =7614.23 Ay = 427.63 Az = 98.10
5417 —.4894 .6834

u = | .6295 u, = | —.3026 uy = | =.7157
.5570 8179 1441

Using two decimal places for simplicity, the variable for the first principal component is
y1 = .54x; + .63x; + .56x3

This equation was used to create photograph (d) in the chapter introduction. The
variables x), x, and x5 are the signal intensities in the three spectral bands. The values
of x convc’zrtec,i to a gray scale between black and white, produced photog_raph (a).
Simill.;lrly the values of x, and x3 produced photographs (b) ar(;df(c), respectlve'ly}.lt‘:;
ixol i le value is computed from y, a weig
h pixel in photograph (d), the gray sca . A
i?l(;arp;)c()mbin};tion of x, x2, and x3. In this sense, photograph (d) “displays” the ﬁrs.tl
principal component of the data.

In Example 4, the covariance matrix for the transformed data, using variables yj,.
va2,and y3,is

7614.23 0 0
D= 0 427.63 0
0 0 98.10

- . ; il
Although D is obviously simpler than the original covariance matrix 'S } t:se (:Fglrj‘ej'
of constructing the new variables is not yet apparent. Hé)wgv?r, tile t;zr;r;(t: W
i diagonal of D, and obviously nes
ariables y;, y,, and y; appear on the . . . o
;/n Dis mljl)éh )I}arger than the other two. As we shall see, this fact.wﬂl permit us to
the data as essentially one-dimensional rather than three-dimensional.

Reducing the Dimension of Multivariate Data

. . . B h most. !
Principal component analysis is potentially valuable for. aPphcgtlons in WE,K(:)  hedal
the variation, or dynamic range, in the data is due to variations in only a fe
ariables, y,...,y,. . B ot chinge
v It can )l))e shownpthat an orthogonal change of vtdrllables, X=P ‘::-g(),isulliplicﬁ i
the total variance of the data. (Roughly speaking, this is true because h-u £ o
by P does not change the lengths of vectors or the angles between them.

12.) This means that if S = PDP”, then

total variance|
of x,... s Xp

total variance
of Voo yp

i ct
The variance of y; is A;, and the quotient A ; / tr(S) measures the fra
variance that is “explained” or “captured” by y;.

=tr(D) = A + Ay

ion of the 0

g tion, Rockvilless
! Data for Example 4 and Exercises 5 and 6 were provided by Earth Satellite Corporation

Maryland.

7.5 Applications to Image Processing and Statistics 431

EXAMPLE 5 Compute the various
multispectral data that are displayed in
shown in the chapter introduction.

percentages of variance of the Railroad Valley
the principal component photographs, (d)—(f),

SOLUTION The total variance of the data is

tr(D) = 7614.23 4 427.63 4- 98.10 — 8139.96

[Verify that this number also equals tr(S).] The percentages of the total variance
explained by the principal components are

First component Second component

7614.23 427.63
= 93.
8139.96 3.5%

Third component

98.1
=5.3% . =12%
8139.96 8139.96

In asense, 93.5% of the information collect
is displayed in photograph (d), with 5.3% j

ed by Landsat for the Railroad Valley region
n (e) and only 1.2% remaining for (f). |

The calculations in Example 5 show that the data have practically no variance in
the third (new) coordinate. The values of Yy are all close to zero. Geometrically, the
data points lie nearly in the plane y3 = 0, and their locations can be determined fairly
accurately by knowing only the values of Y1 and y,. In fact, ys also has relatively small
variance, which means that the points lie approximately along a line, and the data are
essentially one-dimensional, See Figure 2, in which the data resemble a popsicle stick.

Characterizations of Principal Component Variables

Ifyy.....y, arise from a principal component anal
vations, then the variance of Vs as |
any unit vector and if y = u’'X,
the original data X, ..
maximum value of u

ysis of a p x N matrix of obser-
arge as possible in the following sense: If u is
then the variance of the values of vasXv
-+ Xy turns out to be u” Su. By The
""Su, over all unit vectors u. is the |
this variance is attained when w is the cor
Theorem 8 shows that V2 has maximum
that are uncorrelated with ». L
variables uncorrelated with botl

aries over
orem 8 in Section 7.3, the
argest eigenvalue 1| of S, and
responding eigenvector u,. In the same way,
possible variance among all variables y=u"X
ikewise, y3 has maximum possible variance

among all
1y and y,, and so on.

-~ NUMERICAL NOTE ——

The singular value decomposition is the main too] for performing principal com-
ponent analysis in practical applications. If B is a P % N matrix of observations
in mean-deviation form, and if A4 — (1/v/N =T)B" then A4 is the covariance
matrix, S. The squares of the singular values of A are the p eigenvalues of S,
and the right singular vectors of A are the principal components of the data.

As mentioned in Section 7.4, iterative calculation of the SVD of A is
and more accurate than

true, for instance,
tioned in the

faster
an eigenvalue decomposition of §'. This is particularly
in the hyperspectral image processing (with p = 224) men-
chapter introduction, Principal component
seconds on specialized workstations.

analysis is completed in

Further Reading

Lillesand, Thomas M., and Ralph W. Ki
4th ed. (New York: John Wiley, 2000).

efer, Remote Sensing and Image Interpretation,
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7.

‘ PRACTICE PROBLEMS

Symmetric Matrices and Quadratic Forms

The following table lists the weights and heights of five boys:

Boy | #1 #2 #3 #4 #5

Weight (Ib)

120 125 125 135 145

Height (in.) 61 60 64 68 72

1. Find the covariance matrix for the data.

2. Make a principal component analysis of the data to find a single size index that
explains most of the variation in the data.

5 EXERCISES

In Exercises 1 and 2, convert the matrix of observations to mean-
deviation form, and construct the sample covariance matrix.

1 |:19 22 6 3 2 20]

2.

3.

8.

12 6 9 15 13 5

1 5 2 6 7 3
3 11 6 8 15 11
Find the principal components of the data for Exercise 1.

Find the principal components of the data for Exercise 2.

. [M] A Landsat image with three spectral components was

made of Homestead Air Force Base in Florida (after the
base was hit by Hurricane Andrew in 1992). The covariance
matrix of the data is shown below. Find the first principal
component of the data, and compute the percentage of the
total variance that is contained in this component.

164.12 32.73 81.04
S = 3273 53944 249.13
81.04 24913  189.11

. [M] The covariance matrix below was obtained from a Land-

sat image of the Columbia River in Washington, using data
from three spectral bands. Let x,, x;, x5 denote the spectral
components of each pixel in the image. Find a new variable of
the form y, = ¢;x; + ¢2X2 + ¢3x3 that has maximum possi-
ble variance, subject to the constraint that ¢? + ¢ + ¢3 = 1.
What percentage of the total variance in the data is explained

by »1?

29.64  18.38 5.00
S =1838 20.82 14.06
500 14.06 29.21

. Let x|, x, denote the variables for the two-dimensional

data in Exercise 1. Find a new variable y, of the form
Y1 = c1x; + Caxy, with ¢? + ¢2 = 1, such that y; has maxi-
mum possible variance over the given data. How much of the
variance in the data is explained by y,?

Repeat Exercise 7 for the data in Exercise 2.

9.

10.

11.

12.

13.

" —
Suppose three tests are administered to a random sample
of college students. Let X, ..., Xy be observation vectorg
in R3 that list the three scores of each student, and for
J =1,2,3,let x; denote a student’s score on the jth exam,
Suppose the covariance matrix of the data is

5 2 0
S=12 6 2
o 2 7

Let y be an “index” of student performance, with y =
c1x) + €3x3 + €3x3 and ¢ + ¢2 + ¢2 = 1. Choose ¢;, ¢, 3
so that the variance of y over the data set is as large as.
possible. [Hint: The eigenvalues of the sample covariange
matrix are A = 3,6, and 9.]

5 4 2
[M] Repeat Exercise 9 with § = | 4 11 4
2 4 5

Given multivariate data X,;,...,Xy (in R”) in mein-

deviation form, let P be a p x p matrix, and define

Y, =PTX, fork=1,...,N.

a. Show thatYy,..., Yy are in mean-deviation form. [Hfiffe
Let w be the vector in RY with a 1 in each entry. Then:
(X, Xy ] w = 0 (the zero vector in R?) ]

b. Show that if the covariance matrix of Xy, ..., Xy i8 Sy
then the covariance matrix of Y, ..., Yy is PTSP.

L

Let X denote a vector that varies over the columns of a p %4
matrix of observations, and let P be a p X p orthogon
matrix. Show that the change of variable X = PY U ]
change the total variance of the data. [Hint: By Exercise
it suffices to show that tr(P7SP) = tr(S). Use a prok
of the trace mentioned in Exercise 25 in Section 541

The sample covariance matrix is a generalization of 4 101

i ) =meiiiSs
for the variance of a sample of N scalar measurementss

ti,...,ty. If m is the average of ¢, ...,y then the 3¢
variance is given by
I n
2
7 2 te—m)

k=l

7“
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i’:hc W how the sample covariance matrix, §, defined prior to
.x:lp!ple 3, may be written in g form similar to (1). [ Hint: Use
partitioned matrix multiplication to write S as /(N =1

times the sum of N matrices of size

; . A PXp.Forl<k< I
write X; — M in place of X,.] r ShEN,

| f SOLUTIONS TO PRACTICE PROBLEMS

1. First arrange the data i iation fi - -
\ g 1ata In mean-deviation form. The sample mean vector is easily |
seen to be M =

65 |- Subtract M from the observation vectors (the columns in |
| the table) and obtain

Bz[—lo -5 =5 5 15 |
-4 -5 -1 3 7 ’
Then the sample covariance matrix is
-10 -4 (
§=_L1 [-10 -5 5 5 457 =5 =5 |
S5—1] -4 -5 -1 3 7] s
5 3
15 7
:1 400 1907 T1000 475
4190 100 |~ | 475 25.0]

2. The eigenvalues of S are (to two decimal places)

A1 =123.02 and Ay = 1,98

_ [ 900 . :
u= 436 |- (Since § is 2 x 2, the

and if a matrix program is ot available.) For the size

The unit ei res i i
cigenvector corresponding to A 1 is

computations can be done by h
index, set

Y = .900% + 436}

h A ~ . . I
‘\Zi r?;c; w alildhfz are weight and height, respectively, in mean-deviation form. The '
o celc())0 t+152 51ndex over the data set is 123.02. Because the total varian.ce is

= = 125, the size ind i
e € 1index accounts for practically all (98.4%) of the

. The original data for Practice Probl
prlnmpal component u are shown in Fi
18X = M + ru.) It can be shown that t

em 1 and the line determined by the first
gure 4: (In parametric vector form, the line
he line is the best approximation to the data,

120 130 140 150

Pounds

FIGUR.E 4 An orthogonal regression line determined by the
first principal component of the data.




