
Harish-Chandra center

The remarkable fact is that sl(2) has no center, but its enveloping algebra has
a center, a polynomial algebra C[c], where c = 2XY + 2Y X + H2.

Exercise 1. Show that c is central.

If you had a nilpotent algebra, we would not have a center. I want to explain
that c is a ”quantization” of the Killing form. The enveloping algebra Usl(2)
has a natural filtration by the sets Un of elements expressable in monomials of
at most n variables. The algebra structure is compatible with this filtration.
We can compute its associated graded.

Gr(Usl(2)) =
⊕
n

Un/Un−1

You can do this by hand or use the Poincaré-Birkhoff-Witt theorem and the
answer is that this is

Sym sl(2) = O(sl(2)∗)

The memory of the associative algebra you see on the associated graded is a Pois-
son bracket, so the original Lie bracket induces a Poisson bracket on O(sl(2)∗).
Ug is the ”quantization” of O(sl(2)∗) as a Poisson algebra. For linear things the
Poisson bracket is the Lie algebra and then you extend it by the Leibniz rule.
The Poisson structure is on the associated graded. [Picture: Poisson algebra
over 0, associated algebra over ~ 6= 0]

(See the other notes for this lecture for some of the pictures.) Now I will
tell you what I mean by the element c being a quantization. The Casimir c ∈
Gr2(Usl(2)) is the Killing form up to possible scale.

I would like to draw a picture to explain how you might have guessed that
this is the center. Let me draw a picture of sl(2)∗. I have drawn a cone, a
quadratic cone, and now I’ll draw some non-singular quadratic hypersurfaces.
sl(2)∗ has a natural function on it called the Killing form, it is a map to A1 and
the determinant is the Killing form as a quadratic form. The map sl(2)∗ → A1

is a map from a Poisson algebra to its Poisson center. The fibers are symplectic
leaves. Find the Poisson center and then quantize it. The Killing form was in
the Poisson center already before we quantized.

Let’s go back to being more concrete. I want to give a way to think the
Harish-Chandra theorem.

z = C[c] ⊆ Usl(2)

Let’s introduce the following notation for upper triangular matrices and strictly
upper triangular matrices.

b = 〈H,X〉 ⊂ sl(2)

n = 〈X〉 ⊂ sl(2)

Uh = C[H]

Consider the Usl(2)-module Usl(2) ⊗Un C = Usl(2)/Un. Note that this is
a Usl(2) left module, it is also a Uh right module.
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Exercise 2. Check that the left action of the center C[c] is given by the right
action of C[(H + 1)2].

Let’s do the exercise. Let’s act in this principal series module on the ele-
ment 1. If an X is all the way to right, it’s zero.

c · 1 = 2XY + H2 = 2(Y X + H) + H2 = 2H + H2 = (H + 1)2 − 1

C[(H + 1)2 − 1] = C[(H + 1)2] C[H + 1]Z/2 = C[(H + 1)2]

[picture of Spec C[H] with integer points labeled.]
Conclusion:

Spec z = Spec(C[H + 1])/(Z/2)

I’ll use the existence of the Harish-Chandra center to prove that finite-dimensional sl(2)-
representations are semi-simple.

Exercise 3. c scales Ln, n ≥ 0 by 2n + n2 = (n + 1)2 − 1

[Picture of this parabola]
What this picture tells you that the representations are far away from each

other.
[another picture, L0 is at 0, L1 is at 3]
I am going to now give a proof of the theorem that Repfd(sl(2)) is semi-

simple. I told you earlier that this equivalent to the statement that the radical
is trivial, but I am not going to prove that.

Claim: Any SES
0→ U → V → L0 → 0

with U irreducible splits.

(i) U = L0: Any two-dimensional representation of sl(2) with 1-dim. sub is
trivial.

(ii) U irreducible, 6= L0: The Casimir acts with different scalars on the sub
and the quotient.

Exercise 4. (i) and (ii) imply the claim in general.

Now suppose we have a general SES

0→ U →W → V → 0

Consider HomC(V,U) and define the subspace Y of maps that scale U . Inside
of Y , look at the subspace Z of maps that kill U . We have a SES

0→ Z → Y → C→ 0

of sl(2)-reps. The Claim implies that Y ' Z ⊕C. This completes the proof as
we now have a map from V to U in the complement of the subspace of maps
filling U .
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Remark. Recall the BGG resolution

0→ V−1 → V0 → L0 → 0

where V0 = C〈Y 〉 and V−2 = Y C〈Y 〉. This doesn’t split. The Casimir acts by
the same scalar on V−2 and L0. So (ii) in the proof of the Claim fails in the
infinite-dimensional case.

I think we have completed an arc about finite-dimenionsal representations
of sl(2) [...] What is the algebraic geometry of all Usl(2)-modules?

Analogy: Fin dim : All mods :: Borel-Weil-Bott : Beilinson-Bernstein
We are going to construct algebraic-geometric objects on P1.

P1 = A1
z tGm A1

w sl(2)→ Vect(P1)

Local formulas

X 7→ −z2∂z
H 7→ 2z∂z

Y 7→ ∂z

Y is the translation vector field, H is 2 times the dilation [Pictures of these
vector fields].

In the other coordinate patch w = 1/z,

X 7→ ∂w

H 7→ −2w∂w

Y 7→ −w2∂w

What is the enveloping algebra?

Definition. A differential operator on X = SpecR is an element of

DX =
⋃
n≥0

D≤n
X

where D≤n
X ⊂ Endk(R) s. t.

D≤−1
X = {0}

and
[D≤n

X , R] ⊆ D≤n−1
X

Note: D≤0
X = R

Exercise 5. Gr(DX) = O(T ∗X)

Exercise 6. DX is the enveloping algebroid of TX .
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First fundamental fact: sl(2) = Vect(P1) induces

Usl(2)/z0 ∼= Γ(P1, DP1)

z0 = ideal of z for trivial rep L0 (things that kill the trivial representation)

[Another picture of g∗, and the map down to Spec C[c]. What is the classical
interpretation of Usl(2)/z0? nilpotent cone]

There is a natural resolution of the nilpotent cone, the cotangent bundle
of T ∗P1. The l. h. s. is a quantization of O(N), functions on the nilpotent cone,
and the r. h. s. is a quantization of Ñ = T ∗P1.
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