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Summarizing where we left off, we work over k = C and g being reductive means ad g
is completely reducible, meaning g = [g, g] ⊕ Z(g), where [g, g] is semisimple. We recalled
that semisimple means rad g = 0, while reductive means rad g = Z(g). In particular, the
abelian Lie algebra k is never semisimple, but is reductive. Lastly, we said a group G being
reductive meant that its finite dimensional representations are completely reducible, and this
was equivalent to its unipotent radical (the g ∈ rad(G) such that 1 − g is nilpotent) being
trivial. A finite dimensional representation of a reductive algebra g might not be completely
reducible; it is if its center acts as scalars.

Examples of Lie algebras

• p = {A : A is block upper-triangular, with the size of the blocks given by some partition
of the dimension}. Borel subalgebra is a special case. This is not reductive.

• g = {A : A is block diagonal} (with sizes given again arbitrary). This is reductive, but
has a center (one dimension for each block), so it isn’t semisimple.

• gss = [g, g]: block diagonal matrices where each block is traceless. This is semisimple,
and is simple when there is just one block, i.e. gss = sl(n).

Examples of Lie groups There was one additional component in the hierarchy of Lie
groups vs. algebras: affine groups lie between complex Lie groups and semisimple Lie groups.

• G = S1 is not complex.

• G = E/C, a complex elliptic curve, is compact and non-affine.

• Ga = A1 is affine but not reductive (even though its algebra is reductive).

• Gm = GL(1) is reductive (like its algebra), but not semisimple.

• G = SO(4) is semisimple but not simple (SO(4) ∼= SO(2)× SO(2)/{±1})

Classification of simple Lie algebras Subscripts indicate rank, and inequalities for n
are chosen so there are no repetitions.

• An = sl(n+ 1);n ≥ 1

• Bn = so(2n+ 1);n ≥ 2

1



• Cn = sp(2n);n ≥ 3

• Dn = so(2n);n ≥ 4

• E6, E7, E8

• F4

• G2

Exercise: Construct some of the exceptional algebras, or their groups.
Classification of simple Lie groups Every group has a universal cover, and all simple

Lie groups have finite centers. Hence each of the algebras above corresponds to finitely many
non-isomorphic Lie groups.

• An: The group SL(n + 1) is simply-connected (we’re working over C, not R), and its
center consists of scalars, the n + 1th roots of unity. Lie groups of type An are thus
classified by subgroups of the cyclic group Cn+1 of size n + 1; there are as many of
these as there are divisors of n+ 1. At the opposite side of SL(n), quotienting out the
whole center gives PGL(n+ 1) = SL(n+ 1)/Z(SL(n+ 1)) = GL(n+ 1)/GL(1), whose
fundamental group is Cn+1, and is actually simple as a (not-Lie) group.

• Bn: All orthogonal groups have fundamental group π1(SO(m)) = Z/2. Odd dimen-
sional ones have no center, so there are two groups of type Bn: SO(2n + 1) and its
universal cover, the spin group Spin(2n+ 1).

• Cn: The symplectic group Sp(2n) is simply connected, like with the An series. The
center of Sp(2n) is plus/minus the identity, so Sp(2n)/{±1} is the only other group of
type Cn.

• Dn: There is SO(2n), Spin(2n), and as noted above, SO(2n)/{±1}. Things get even
slightly worse for this case though: when n is even, the center of Spin(2n) is Z/2⊕Z/2;
when n is odd, it is Z/4.

• So now we “know” the classification of reductive groups: quotients by discrete sub-
groups of finite products of groups in the above list with abelian groups.

Langlands dual algebras and groups
On Lie algebras, the dual preserves direct sums and abelian components. On simple

algebras, it switches Bn and Cn and preserves every other type, and on abelian algebras,
z∨ = z∗ (Langlands dual is vector space dual). So on semisimple Lie algebras, the Langlands
dual is the Dynkin dual (the Lie algebra with dual Dynkin diagram). These facts define the
Langlands dual for any reductive complex Lie algebra, but don’t explain where the concept
comes from.

On the group level, for G simple, it “switches” the fundamental group and center. So

SL(n)∨ = PGL(n), SO(2n+1)∨ = Sp(2n), Spin(2n)∨ = SO(2n)/{±1}, SO(2n)∨ = SO(2n).
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Somehow this is supposed to act like a nonabelian Fourier transform. One theme of this
course will be that representation theory and harmonic analysis onG corresponds to algebraic
geometry on G∨.

Definition of the Langlands dual for tori Exercise: A group T is reductive and
abelian implies T ∼= GL(1)n = (C∗)n. This is what we call a torus (it deformation retracts
onto the torus (S1)n).

For a torus T , we defined the character / weight lattice X∗(T ) = Λ∨T as the set of
homomorphisms (as abelian groups) T → GL(1). For each factor of C∗ in T , this is the
choice of some m-sheeted covering map for some integer m (m = 0 corresponds to the
constant map). So X∗(T ) ∼= Zn.

We defined the cocharacter / coweight lattice X∗(T ) = ΛT of T as HomAb(Gm, T ), and
this is again isomorphic to Zn. The two are dual lattices.

Exercise: Show T = SpecC[Λ∨T ] = ΛT ⊗Z Gm.

With that we define the Langlands dual T∨ of T to be SpecC[ΛT ] = Λ∨T ⊗Z Gm.
Exercise: Λ∨T∨ = ΛT ,ΛT∨ = Λ∨T .
In contrast to what we’ll see later, everything defined so far here for tori was clearly

functorial. Since the character lattice is the set of possible characters of the irreducible
representations of T (they’re all 1-D since T is abelian), and since T is reductive, this means
that the category of f.d. representations of T is graded by Λ∨T . The statement of the Satake
correspondence is then that this category is equivalent, as a tensor category, to the category
of Λ∨T -graded vector spaces. On the representation side, the tensor product is the tensor
product of representations; this gives a convolution product on the vector space side, which
defines the tensor category structure there.
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