MATH 274 NOTES: 16 MARCH 2017

EUGENE RABINOVICH

We'll start today by answering a question from last time: why do we have the following equivalence of categories?

$$\mathcal{D}_c(pt)^T \simeq \text{finitely generated } \Lambda - mod,$$

where T is a torus, and $\Lambda = C_{-\bullet}(T) \simeq \operatorname{Sym}(\mathfrak{t}[1])$ with convolution as the multiplication. If $p: ET \to BT$ is the universal bundle for principal T-bundles, then an object in $\mathcal{D}_c(pt)^T$ is a complex \mathcal{F}^{\bullet} on BT such that $p^*(\mathcal{F}^{\bullet})$ is constant. In other words, $\mathcal{D}_c(pt)^T$ is equivalent to the derived category of complexes \mathcal{F}^{\bullet} on BT whose cohomology is a local system. **Remark:** BT is simply connected, so all local systems on it are constant.

Now, consider $p: ET \to BT$. From this map, we obtain an adjunction:

$$p_!: \mathcal{D}_c(pt) \leftrightarrow \mathcal{D}_c(pt)^T: p^!,$$

where $p_!$ is pushforward with compact suppoprt and $p^1 \simeq p^*[dimT]$, since T is smooth and orientable. We can apply (the derived, infinity-categorical version of) the Barr-Beck theorem to get

$$\mathcal{D}_c(pt)^T \xrightarrow{\sim} p! p_! - mod((\mathcal{D}_c(pt))).$$

Thus, all we have to do is calculate that $p!p!\mathbb{C}_{pt} \simeq \Lambda$, and we will have our assertion. Actually, it's easier to work with the usual (p^*, p_*) adjunction, at the cost of switching from modules over monads to comodules over comonads. The result is that we have

$$\mathcal{D}_c(pt)^T \xrightarrow{\sim} p^*p_* - comod(\mathcal{D}_c(pt)).$$

Well, $p^*p_*\mathbb{C}_{pt} \simeq C^{\bullet}(T)$ as coalgebras, and

$$C^{\bullet}(T) - comod(\mathcal{D}_c(pt)) \simeq C_{-\bullet(T)} - mod(\mathcal{D}_c(pt)),$$

since $C_{-\bullet}(T) = C^{\bullet}(T)^{\vee}$. As an example, under this equivalence of categories, \mathbb{C}_{BT} goes to $p^*\mathbb{C}_{BT} \simeq \mathbb{C}_{pt}$, which is the augmentation module over $C_{-\bullet}(T)$.

This answers the question from last time. Now, we can move on to studying bases of the Hecke category $\mathcal{D}_c(G/B)^B \simeq \mathcal{D}_c(G)^{B \times B}$.

(1) Standard Basis: Let $w \in \mathcal{W}$ (the Weyl group of G) and consider the inclusion j_w of the Schubert cell S_w into G/B. The standard basis is

$$\{J_{w*} = j_{w,*} \mathbb{C}_{S_w} \mid w \in \mathcal{W}\}.$$

This is a basis in the sense that every object in $\mathcal{D}_c(G/B)$ is a finite complex built out of J_{w*} 's.

(2) Costandard Basis: Define $J_{w!}$ by replacing * with ! above.

The issue is that these bases aren't particularly useful for computation. Theoretically, we have the following theorem:

Theorem 0.1. The map $B_{\mathcal{W}} \to \mathcal{D}_c(G/B)^B$ given by $s_i \mapsto J_{s_i,*(!)}$ is a homomorphism from the braid group to the Hecke category.

In fact, if w_1, w_2 are of lengths ℓ_1, ℓ_2 , respectively, and w_1w_2 has length $\ell_1 + \ell_2$, then

$$J_{w_1,*(!)} \star J_{w_2,*(!)} \simeq J_{w_1w_2,*(!)}.$$

The main problem is that if we remove the condition on the length of w_1w_2 , then $J_{w_1,*(!)} \star J_{w_2,*(!)}$ is very complicated and in particular is not a sum of $J_{w,*}$'s.

As an example, let's take G = SL(2). Then $G \setminus B = \mathbb{P}^1$. Let $j_s : \mathbb{A}^1 \hookrightarrow \mathbb{P}^1$ be the inclusion of the affine line into \mathbb{P}^1 . By definition, $J_{s,*(!)} = j_{s,*(!)} \mathbb{C}_{\mathbb{A}^1}$. We compute:

$$J_{s,!} \star J_{s,!} = \pi_! \mathbb{C}_X,$$

where

$$X = {\ell_1, \ell_2 \in \mathbb{P}^1 \mid \ell_1 \neq \ell_0, \ell_2 \neq \ell_0}$$

 $(\ell_0 \text{ is a standard line in } \mathbb{A}^2)$, and

$$\pi: X \to \mathbb{P}^1, \quad (\ell_1, \ell_2) \mapsto \ell_2.$$

We find that the stalks of $\pi_!\mathbb{C}_X$ are given by $H_c^{\bullet}(\mathbb{A}^1)$ over ∞ and $H_c^{\bullet}(\mathbb{G}_m)$ over points in \mathbb{A}^1 . We might hope that

$$J_{s,!} \star J_{s,!} = \pi_! \mathbb{C}_X \simeq J_{1!} \otimes H_c^{\bullet}(\mathbb{A}^1) \oplus J_{s!} \otimes H_c^{\bullet}(\mathbb{G}_m).$$

But this hope is too optimistic. To see why, we calculate compactly supported global sections of both sides. $\Gamma_c(\mathbb{P}^1, \pi_! \mathbb{C}_X) = H_c^{\bullet}(X) \simeq \mathbb{C}[-4]$. On the other hand,

$$\Gamma_c(\mathbb{P}^1, J_{1!}) \simeq H_c^{\bullet}(pt) = \mathbb{C}$$

 $\Gamma_c(\mathbb{P}^1, J_{s!}) \simeq H_c^{\bullet}(\mathbb{A}^1) = \mathbb{C}[-2].$

Thus, $J_{1!} \otimes H_c^{\bullet}(\mathbb{A}^1) \oplus J_{s!} \otimes H_c^{\bullet}(\mathbb{G}_m)$ is non-zero only in degrees two and three, so we can't have our optimistic hope hold.

Thus, we'd like to find a better basis $\{I_1, I_s\}$ for the Hecke category. We keep $I_1 = J_{1!} = J_{1*}$, which is our monoidal unit. Now, we take $I_s := \mathbb{C}_{\mathbb{P}^1}[1]$. Note that I_s fits into a triangle

$$J_{1*} \rightarrow I_s \rightarrow J_{s*}[1],$$

which upon rotation becomes

$$I_s \to J_{s*}[1] \to J_{1*}[1],$$

so that J_{s*} is built out of the I's. We can also calculate $I_s \star I_s$. Here, we use

$$\tilde{X} = {\{\ell_1, \ell_2 \in \mathbb{P}^1\}} = \mathbb{P}^1 \times \mathbb{P}^1$$

and $\pi_2: \tilde{X} \to \mathbb{P}^1$, which is simply projection onto the second factor. We compute

$$I_{s} \star I_{s} = \tilde{\pi}_{!} \mathbb{C}_{\tilde{X}}[2] \simeq \mathbb{C}_{\mathbb{P}^{1}} \oplus H_{c}^{\bullet}(\mathbb{P}^{1})[2]$$
$$\simeq \mathbb{C}_{\mathbb{P}^{1}}[2] \oplus \mathbb{C}_{\mathbb{P}^{1}}$$
$$\simeq I_{s}[1] \oplus I_{s}[-1].$$

This is actually a nice formula for the product of the I's.

Next time, we will introduce the intersection complexes $I_w \in \mathcal{D}_c(G/B)^B$, $w \in \mathcal{W}$ that satisfy the following deep theorem:

$$I_{w_1} \star I_{w_2} = \bigoplus_i I_{w_i}[d_i],$$

i.e. taking the monoidal product of these complexes always lands us in sums of the I_w 's.