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Last time we constructed the Hecke algebra Hq as the C-valued functions on B\G/B(Fq)
with the algebra structure given by convolution, and we gave a topological interpretation for
the case q = 1. Our next goal will be to study the Hecke category, which will be the derived
category of sheaves of C-vector spaces on B\G/B. Thinking of the double coset space as
B\(G/B), this is the same as studying B-equivariant sheaves on the flag variety. Therefore
we will need to talk about the equivariant derived category of sheaves, and as a first step in
that direction we will review equivariant cohomology.

Recall that if X is a space and CX is the constant sheaf on X, then we have an algebra
isomorphism

EndD(X)(CX) = H∗(X,C)

were D(X) denotes the derived category of X. Indeed, to compute the endomorphisms
we may take the resolution CX → C•X , where C•X denotes cochains on X. Therefore
EndD(X)(CX) = Hom(CX , C

•
X) = Γ(X,C•X), which computes the cohomology of X.

Now, since CX is a unit of the monoidal structure on D(X), we get that EndD(X)(CX) =
H∗(X,C) acts as endomorphisms of the identity functor of D(X). In the equivariant case,
we expect the equivariant cohomology to give us endomorphisms of the identity functor of
the equivariant derived category.

Primer on Equivariant Cohomology

Let X be a space, and G be a topological group acting on X. As a first approximation,
one may difine the equivariant cohomology H∗G(X) as the cohomology of X/G. However
this is not well behaved when the action is not free, and by taking the naive quotient we
are throwing away the information contained in the stabilizers. A better notion comes from
first replacing X by a homotopy equivalent space with a free action. We therefore define the
equivariant cohomology H•G(X) = H•(G\(EG×X)), where EG is a contractible space with
a free G action. This may be seen to be independent of the choice of EG.

We may also give an explicit construction of EG. In general, given Y a (reasonable) space,
we may construct a simplicial space whose space of n-simplices is Y n. Then its geometric
realization EY may be seen to be contractible.
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More explicitly, EY is built out of Y by first adding a path joining each pair of points,
then filling the new triangles determined by those paths, etc. In the case where Y = G, the
group G acts on EG, and this action may be seen to be free.

Examples:

1. If Y = ∗ then EY = ∗.

2. If Y = S0 then EY = S∞ ⊂ R∞.

3. If Y = S1 then EY = S∞ = (C∞)×/R×.

Now, define BG = EG/G. This is the classifying space for principal G-bundles. By
definition, the equivariant cohomology of the point H∗G(∗) is equal to H∗(BG). This is the
base ring for equivariant cohomology: if G y X then we have a fibration

G\(X × EG)→ G\EG = BG

with fiber X, which induces a map of algebras H∗G(∗) → H∗G(X). Moreover, we have the
Leray spectral sequence E2 = H∗(BG,H∗(X))⇒ H∗G(X). We will say that the action of G
on X is equivariantly formal if the spectral sequence degenerates at E2.

Examples

Observe that if we have a morphism G→ H which is a homotopy equivalence and H y X,
then G also acts on X and the induced map H∗H(X) → H∗G(X) is an isomorphism. With
that in mind, we do some examples

1. Let T = S1 ' C×. Then H∗T (∗) = H∗(CP∞) = k[u] where deg u = 2. We think of that
ring as being the ring of functions on the affine line.

2. Let T ⊂ G = SU(n) ' SL(n,C) be the maximal torus. Then H∗T (∗) = k[u1, . . . , un−1].
Moreover, the map H∗G(∗) → H∗T (∗) may be seen to be an injection, and in fact it
identifies H∗G(∗) with the ring of invariants k[u1, . . . , un−1]

W .

Equivariant Localization

Let T = (S1)n ' (C×)n. Let T y X be an action, and XT be the fixed points.

Theorem. The map H∗T (X)→ H∗T (XT ) = H∗(XT )⊗H∗T (∗) becomes an isomorphism after
tensoring with k(u1, . . . , un) (where the tensor product is over H∗T (∗) = k[u1, . . . , un]).
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