Name: \qquad

1. Show any projective curve C admits a finite map $C \rightarrow \mathbb{P}^{1}$.
2. Consider (closed) points $y_{i} \in \mathbb{P}^{1}$, for $i=1, \ldots, 2 k$.
(a) Construct a smooth projective curve C and a degree 2 map $f: C \rightarrow \mathbb{P}^{1}$ such that f is ramified precisely at the points $f^{-1}\left(y_{i}\right)$, for $i=1, \ldots, 2 k$.
(b) For fixed points $y_{i} \in \mathbb{P}^{1}$, for $i=1, \ldots, 2 k$, is your curve C and/or map f unique? What about for varying points?
3. Let C be a smooth projective curve and $L \rightarrow C$ a line bundle. Consider the following condition: (\dagger) for any distinct (closed) points $x \neq y \in C$, there exists a global section σ of L such that $\sigma(x)=0, \sigma(y) \neq 0$ or vice versa.
(a) What L on $C=\mathbb{P}^{1}$ satisfy (\dagger)?
(b) What L on C of genus 1 satisfy (\dagger)?
(c) Show for any C, there exists $L \rightarrow C$ such that (\dagger) holds.
