Name: \qquad

1. For each of the listed graded rings R, describe Proj R. We write $|r|$ for the degree of an element $r \in R$.
(a) $R=\mathbb{C}[x, y] /\left(x^{2}, y^{2}\right)$ with $|x|=|y|=1$.
(b) $R=\mathbb{C}[w, x, y, z] /\left(w z-x y, w y-x^{2}, x z-y^{2}\right)$ with $|w|=|x|=|y|=|z|=1$.
(c) $R=\mathbb{C}[x, y]$ with $|x|=1,|y|=2$.
(d) (challenge) $R=\mathbb{C}[x, y, z]$ with $|x|=1,|y|=2,|z|=3$.
2. Given a scheme Y, recall each point $y \in Y$ is the image of a map $y: \operatorname{Spec} k(y) \rightarrow Y$, where $k(y)=$ $\mathcal{O}_{Y, y} / \mathfrak{m}_{y}$ with $\mathcal{O}_{Y, y}$ the stalk of the structure sheaf of Y at y, and $\mathfrak{m}_{y} \subset \mathcal{O}_{Y, y}$ the maximal ideal. (Locally, if we have $Y=\operatorname{Spec} R$ and $y=\mathfrak{p}$, then $\mathcal{O}_{Y, y}=R_{\mathfrak{p}}$, and $\mathfrak{m}_{y}=R_{\mathfrak{p} p} \mathfrak{p}$) Given a map of schemes $f: X \rightarrow Y$, and a point $y \in Y$, define the fiber to be the fiber product $X \times_{Y} y$.
Calculate the fiber of the map $f: \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}, f(x, y)=(x, x y)$ at the listed points.
(a) any closed point (a, b) given by a maximal ideal $(x-a, y-b) \subset \mathbb{C}[x, y]$.
(b) the generic point given by the zero ideal $(0) \subset \mathbb{C}[x, y]$.
(c) a (neither closed nor open) point given by a prime ideal $(p) \subset \mathbb{C}[x, y]$ for irreducible $p \neq 0$.
3. Let X be an irreducible, reduced scheme with generic point x and associated field $k(x)$.
(a) Describe maps $X \rightarrow \mathbb{P}^{1}$ in terms of elements of $k(x)$.
(b) Describe all scheme maps $\mathbb{P}^{2} \rightarrow \mathbb{P}^{1}$.
