Name: _____

- 1. For each of the listed graded rings R, describe $\operatorname{Proj} R$. We write |r| for the degree of an element $r \in R$.
 - (a) $R = \mathbb{C}[x, y]/(x^2, y^2)$ with |x| = |y| = 1.
 - (b) $R = \mathbb{C}[w, x, y, z]/(wz xy, wy x^2, xz y^2)$ with |w| = |x| = |y| = |z| = 1.
 - (c) $R = \mathbb{C}[x, y]$ with |x| = 1, |y| = 2.
 - (d) (challenge) $R = \mathbb{C}[x, y, z]$ with |x| = 1, |y| = 2, |z| = 3.
- 2. Given a scheme Y, recall each point $y \in Y$ is the image of a map y: Spec $k(y) \to Y$, where $k(y) = \mathcal{O}_{Y,y}/\mathfrak{m}_y$ with $\mathcal{O}_{Y,y}$ the stalk of the structure sheaf of Y at y, and $\mathfrak{m}_y \subset \mathcal{O}_{Y,y}$ the maximal ideal. (Locally, if we have Y = Spec R and $y = \mathfrak{p}$, then $\mathcal{O}_{Y,y} = R_{\mathfrak{p}}$, and $\mathfrak{m}_y = R_{\mathfrak{p}}\mathfrak{p}$.) Given a map of schemes $f: X \to Y$, and a point $y \in Y$, define the fiber to be the fiber product $X \times_Y y$.

Calculate the fiber of the map $f : \mathbb{A}^2 \to \mathbb{A}^2$, f(x, y) = (x, xy) at the listed points.

- (a) any closed point (a, b) given by a maximal ideal $(x a, y b) \subset \mathbb{C}[x, y]$.
- (b) the generic point given by the zero ideal $(0) \subset \mathbb{C}[x, y]$.
- (c) a (neither closed nor open) point given by a prime ideal $(p) \subset \mathbb{C}[x, y]$ for irreducible $p \neq 0$.
- 3. Let X be an irreducible, reduced scheme with generic point x and associated field k(x).
 - (a) Describe maps $X \to \mathbb{P}^1$ in terms of elements of k(x).
 - (b) Describe all scheme maps $\mathbb{P}^2 \to \mathbb{P}^1$.