Name: \qquad

1. For each of the following integral domains R, find its integral closure $R^{\prime} \supset R$, and describe the map $\operatorname{Spec} R^{\prime} \rightarrow \operatorname{Spec} R$.
(a) $R=\mathbb{C}[x, y] /\left(x^{3}-y^{2}\right)$
(b) $R=\mathbb{C}[x, y] /\left(x^{2}-x^{3}+y^{2}\right)$
2. Describe the map Spec $\mathbb{C}[x, y] \rightarrow \operatorname{Spec} \mathbb{R}[x, y]$ of locally ringed spaces - in particular, describe the underlying map of spaces and the induced maps on stalks of structure sheaves - induced by the inclusion $\mathbb{R}[x, y] \subset \mathbb{C}[x, y]$.
3. Let R be a commutative \mathbb{C}-algebra. Show that to give a map $\operatorname{Spec} \mathbb{C}[\epsilon] /\left(\epsilon^{2}\right) \rightarrow \operatorname{Spec} R$ over $\operatorname{Spec} \mathbb{C}$ is the same as to give a point $\mathfrak{p} \in \operatorname{Spec} R$ such that $\mathbb{C} \simeq R / \mathfrak{p}$, along with an element of the dual \mathbb{C}-vector space $\left(\mathfrak{p} / \mathfrak{p}^{2}\right)^{*}$.
