- 1. For each ring R, find the number of irreducible components of Spec R.
 - (a) $R_n = \mathbb{C}[x, y]/I_n$, where $I_n = (x^n y^n)$, for n = 1, 2, 3, ...
 - (b) $R_c = \mathbb{C}[x, y]/I_c$, where $I_c = (x^2 + y^2 + 1, xy c)$, for $c \in \mathbb{C}$.
 - (c) $R_{\lambda} = \mathbb{C}[x, y, z]/I_{\lambda}$, where $I_{\lambda} = (x^2 + y^2 + z^2, \lambda)$, for $\lambda = ax + by + cz$ with $a, b, c \in \mathbb{C}$.
- 2. (a) Suppose $X = \operatorname{Spec} R$ is an affine scheme and $f \in R \simeq \mathcal{O}_X(X)$ is a global function. Show that the open subspace $D(f) \subset X$ equipped with the restricted structure sheaf is again an affine scheme.
 - (b) Let $\mathbb{A}^2 = \operatorname{Spec} \mathbb{C}[x, y]$ be the affine plane, and $0 \in \mathbb{A}^2$ the closed point given by the prime ideal $(x, y) \subset \mathbb{C}[x, y]$. Show that the open subset $\mathbb{A}^2 \setminus 0$ equipped with the restricted structure sheaf is not an affine scheme.
- 3. Give an example of a map of affine schemes $f: X = \operatorname{Spec} R \to \operatorname{Spec} S = Y$ such that its image $f(X) \subset Y$ is not locally closed (= open in its closure).