- 1. Let $X = \mathbb{C}$ be the complex line with its classical topology. Let $f : \mathbb{C} \to \mathbb{C}$, $f(x) = x^2$ be the square map. (a) Describe the pullback $f^*\mathbb{C}_X$ of the constant sheaf.
 - (b) Describe the pushforward $f_*\mathbb{C}_X$ of the constant sheaf, in particular, its indecomposable summands.
 - (c) Can you find a sheaf of \mathbb{C} -vector spaces \mathcal{F} on X such that $f_*\mathcal{F} \simeq \mathbb{C}_X$?
- 2. Let $\pi : Y = \mathbb{C}^2 \{0\} \to \mathbb{CP}^1 = X$, $\pi(x, y) = [x, y]$ be the natural map from the punctured complex plane to the complex projective line, both equipped with the classical topology. Let \mathcal{F} be the sheaf of holomorphic sections of π . So to $U \subset X$ open, \mathcal{F} assigns

$$\mathcal{F}(U) = \{ s = (f,g) : U \to \mathbb{C}^2 \setminus \{0\}, \pi \circ s = id, \text{ with } f,g \text{ holomorphic} \}$$

(a) Calculate the sections of \mathcal{F} over the listed open sets

$$A_+ = \{ [x,y] | x \neq 0 \} \qquad A_- = \{ [x,y] | y \neq 0 \} \qquad A_+ \cap A_- = \{ [x,y] | x,y \neq 0 \}$$

- (b) Use the previous calculation to calculate the global sections of \mathcal{F} .
- 3. Let X be a topological space, and X_{disc} the same set but with the discrete topology.
 - (a) Show the identity map of sets is continuous $f: X_{disc} \to X$.
 - (b) For any sheaf \mathcal{F} of abelian groups on X, calculate the sheaf $f_*f^*\mathcal{F}$ on X.
 - (c) Describe the canonical map (unit of adjunction) $\mathcal{F} \to f_* f^* \mathcal{F}$, and show it is injective.
 - (d) Show $f_*f^*\mathcal{F}$ is flabby. (A sheaf of abelian groups is flabby if its restriction maps are surjective.)

Remark for homological algebraists: iterating the construction of part (c) gives a canonical flabby resolution of any sheaf of abelian groups called the *Godement resolution*.