Name: _____

- 1. For each polynomial below, first describe its affine zero locus, then (minimally) homogenize the polynomial, describe the corresponding projective zero locus, in particular its points on the line at infinity.
 - (a) $p(x,y) = x^3 y$
 - (b) $p(x,y) = x^3 y^2$
 - (c) $p(x,y) = x^3 + x^2 y^2$
- 2. Let $SL(2, \mathbb{C})$ be the set of 2×2 complex matrices

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

with determinant satisfying ad - bc = 1.

- (a) Show that the entries of the product and inverse of elements of $SL(2, \mathbb{C})$ are given by polynomials in the entries of the given elements.
- (b) Consider the natural action of $SL(2, \mathbb{C})$ on the projective space $\mathbb{P}^1_{\mathbb{C}}$ of lines through the origin in $\mathbb{A}^2_{\mathbb{C}}$ induced by the linear action on $\mathbb{A}^2_{\mathbb{C}}$. Given a line

$$\ell = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \in \mathbb{P}^1_{\mathbb{C}}$$

of slope x_1/x_0 , write a formula for the slope of the line obtained by applying

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathrm{SL}(2, \mathbb{C})$$

- (c) Given three distinct lines $\ell_0, \ell_1, \ell_\infty \in \mathbb{P}^1_{\mathbb{C}}$, show there is an element $A \in \mathrm{SL}(2, \mathbb{C})$ that takes $\ell_0, \ell_1, \ell_\infty \in \mathbb{P}^1_{\mathbb{C}}$ to lines of the respective slopes $0, 1, \infty$. Is the element A unique?
- 3. Prove that any function $f : \mathbb{P}^n_{\mathbb{C}} \to \mathbb{C}$ whose restriction to each affine chart $A_i = \{x_i \neq 0\}$, for i = 0, ..., n, is a polynomial must in fact be constant.