\qquad

1. Let $C_{0}(\mathbb{C})$ be the \mathbb{C}-algebra of complex-valued continuous functions on \mathbb{C} with its classical topology.
(a) Describe the maximal ideals of $C_{0}(\mathbb{C})$. Is (0) a prime ideal of $C_{0}(\mathbb{C})$?
(b) Calculate the stalk of the structure sheaf of $\operatorname{Spec} C_{0}(\mathbb{C})$ at the maximal ideals.
(c) Determine if the underlying topological space of $\operatorname{Spec} C_{0}(\mathbb{C})$ is i) connected, ii) quasi-compact, iii) irreducible, iv) Noetherian.
(d) For any prime ideal $\mathfrak{p} \subset C_{0}(\mathbb{C})$, calculate $V(\mathfrak{p}) \subset \operatorname{Spec} C_{0}(\mathbb{C})$.
2. Let X and Y be schemes and R a commutative ring.
(a) Show scheme maps $X \rightarrow \operatorname{Spec} R$ are in natural bijection with ring maps $R \rightarrow \Gamma\left(X, \mathcal{O}_{X}\right)$. Construct a left adjoint to the inclusion AffineSchemes \rightarrow Schemes.
(b) Show any scheme map Spec $R \rightarrow X$ induces a ring map $\Gamma\left(X, \mathcal{O}_{X}\right) \rightarrow R$ but show by example this does not give a bijection.
(c) Explain precisely how a scheme map $f: X \rightarrow Y$ with $f(x)=y$ induces a map $\mathcal{O}_{Y, y} \rightarrow \mathcal{O}_{X, x}$ on the stalks of the structure sheaves.
(d) True or false: any scheme admits an open cover by affines such that the intersections of pairs of opens in the cover are also affine. If true, prove; if false, give a counterexample.
3. Let $G L(n, \mathbb{C})$ be the group of $(n \times n)$-invertible complex matrices. Let $G r(k, n, \mathbb{C})$ be the set of k dimensional subspaces of \mathbb{C}^{n}.
(a) Find a finitely-generated, integral \mathbb{C}-algebra $R(n)$ such that $G L(n):=\operatorname{Spec} R(n)$ has closed points $G L(n, \mathbb{C})$. Equip $G L(n)$ with a group-scheme structure inducing the usual group structure on $G L(n, \mathbb{C})$.
(b) Find a finitely-generated, $\mathbb{Z}_{\geq 0}$-graded, integral \mathbb{C}-algebra $R(k, n)$ such that $G r(k, n):=\operatorname{Proj} R(k, n)$ has closed points $G r(k, n, \mathbb{C})$. Equip $G r(k, n)$ with an action of $G L(n)$ inducing the usual action of $G L(n, \mathbb{C})$ on $G r(k, n, \mathbb{C})$.
(Your construction should specialize to $R(1, n)=\mathbb{C}\left[x_{0}, \ldots, x_{n}\right]$ with $\left|x_{i}\right|=1$ for $i=0, \ldots, n$.)
(c) Fix a plane $P \in G r(2,4, \mathbb{C})$. Construct an open subscheme $U \subset G r(2,4)$ whose closed points are those planes $Q \in G r(2,4, \mathbb{C})$ with $\operatorname{dim}(P \cap Q)=0$. Is U a familiar scheme?
(d) Fix another plane $P^{\prime} \in G r(2,4, \mathbb{C})$ such that $\operatorname{dim}\left(P \cap P^{\prime}\right)=0$. Construct a reduced subscheme $X \subset G r(2,4)$ whose closed points are those planes $Q \in G r(2,4, \mathbb{C})$ with $\operatorname{dim}(P \cap Q) \geq 1$ and $\operatorname{dim}\left(P^{\prime} \cap Q\right)=0$. Describe X as a hypersurface in \mathbb{A}^{4}.
4. Consider the projective plane $\mathbb{P}^{2}=\operatorname{Proj} \mathbb{C}[x, y, z]$. Recall that conics $C \subset \mathbb{P}^{2}$ (possibly degenerate) form a projective space $\mathbb{P}^{5}=\operatorname{Proj} \mathbb{C}[A, B, C, D, E, F]$.
(a) Fix a line $\mathbb{P}^{1} \simeq \ell \subset \mathbb{P}^{2}$. Describe the subscheme $X_{1,0} \subset \mathbb{P}^{5}$ of conics $C \subset \mathbb{P}^{2}$ tangent to ℓ. (You can take the definition of tangent to be that the topological space underlying the intersection $C \times_{\mathbb{P}^{2}} \ell$ is a single point.)
(b) Describe the subscheme $X_{1,4} \subset \mathbb{P}^{5}$ of conics $C \subset \mathbb{P}^{2}$ tangent to ℓ and passing through 4 generic points.
(c) Fix a distinct line $\mathbb{P}^{1} \simeq \ell^{\prime} \neq \ell \subset \mathbb{P}^{2}$. Describe the subscheme $X_{2,3} \subset \mathbb{P}^{5}$ of conics $C \subset \mathbb{P}^{2}$ tangent to ℓ and ℓ^{\prime} and passing through 3 generic points.
(d) Let $X_{m, n} \subset \mathbb{P}^{5}$ be the scheme of conics passing through m generic points and tangent to n generic lines. Can you find a relationship between $X_{m, n}$ and $X_{n, m}$?
