Name: \qquad Math 261A Midterm 2

All representations are assumed to be finite-dimensional and complex unless otherwise stated

1. (10 points) State whether each assertion is always true (T) or sometimes false (F).

(b) (1 point) $\underline{\mathbf{F}}$ Every representation of the Lie algebra $\mathfrak{g l}(2, \mathbb{C})$ is a direct sum of irreducibles.
(c) (1 point) $-\mathbf{T}$ The Killing form on $\mathfrak{s l}(2, \mathbb{C}) \times \mathfrak{s l}(2, \mathbb{C})$ is non-degenerate.
(d) (1 point) $\underline{\mathbf{F}}$ The Killing form on $\mathfrak{b}(2, \mathbb{C})=\{A \in \mathfrak{s l}(2, \mathbb{C}) \mid A$ upper triangular $\}$ is non-degenerate.
 is isomorphic to the trivial representation \mathbb{C}.
(f) (1 point) $-\mathbf{F}$ Every representation of $\mathfrak{s o}(3, \mathbb{C})$ has an invariant non-degenerate inner product.
(g) (1 point) \mathbf{T} Every representation of $S O(3, \mathbb{C})$ has an invariant non-degenerate inner product.
(h) (1 point) $\underline{\mathbf{F}}$ For every finite-dimensional complex Lie algebra \mathfrak{g}, there exists a compact Lie group G_{c} with Lie algebra \mathfrak{g}_{c} satisfying $\mathfrak{g}_{c} \otimes_{\mathbb{R}} \mathbb{C} \simeq \mathfrak{g}$.
(i) (1 point) \mathbf{T} For every connected Lie group G, its category of representations is equivalent to a full subcategory of that of its Lie algebra \mathfrak{g}.
 are all trivial.
2. (10 points) Let $V_{1}=\mathbb{C}^{2}$ denote the standard representation of $\mathfrak{s l}(2, \mathbb{C}), V_{n}=\operatorname{Sym}^{n}\left(V_{1}\right)$ its n-fold symmetric product, and $V_{1}^{\otimes n}=V_{1} \otimes \cdots V_{1}$ its n-fold tensor product. Let $\mathbb{C}\left[e_{n} \mid n \in \mathbb{Z}\right]$ denote the ring of formal characters (weight multiplicities).
(a) (2 points) What is the formal character of V_{n} ?

$$
\text { (a) } \quad \sum_{k=0}^{n} e_{-n+2 k}=e_{n}+e_{n=2}+\cdots+e_{-n}
$$

(b) (2 points) What is the formal character of $V_{1}^{\otimes n}$?

$$
\text { (b) } \quad\left(e_{1}+e_{-1}\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} e_{-n+2 k}
$$

(c) (2 points) What is the multiplicity of the trivial representation V_{0} in $V_{1}^{\otimes 2 n}$?

$$
\text { (c) } \quad\binom{2 n}{n}-\binom{2 n}{n-1}
$$

(d) (2 points) What is the multiplicity of the irreducible representation V_{n-2} in $V_{1}^{\otimes n}$?

$$
\text { (d) } \quad n-1
$$

(e) (2 points) What is the dimension of $\operatorname{Hom}_{\mathfrak{s l}(2, \mathrm{C})}\left(V_{1}^{\otimes n}, V_{1}^{\otimes n}\right)$?

$$
\text { (e) } \quad\binom{2 n}{n}-\binom{2 n}{n=1}
$$

3. (10 points) (a) (5 points) Partition the following Lie algebras into classes so that those within each class are isomorphic to each other and those in different classes are not isomorphic.

$$
\begin{array}{llllllll}
\mathfrak{s l}(2, \mathbb{C}) & \mathfrak{s l}(3, \mathbb{C}) & \mathfrak{s l}(4, \mathbb{C}) & \mathfrak{s o}(3, \mathbb{C}) & \mathfrak{s o}(4, \mathbb{C}) & \mathfrak{s o}(5, \mathbb{C}) & \mathfrak{s o}(6, \mathbb{C}) & \mathfrak{s p}(2, \mathbb{C}) \\
\mathfrak{s p}(4, \mathbb{C}) & \mathfrak{s p}(6, \mathbb{C})
\end{array}
$$

Solution: 1) $\mathfrak{s l}(2, \mathbb{C}) \quad \mathfrak{s o}(3, \mathbb{C}) \quad \mathfrak{s p}(2, \mathbb{C})$
2) $\mathfrak{s l}(3, \mathbb{C})$
3) $\mathfrak{s l}(4, \mathbb{C}) \quad \mathfrak{s o}(6, \mathbb{C})$
4) $\mathfrak{s o}(4, \mathbb{C})$
5) $\mathfrak{s o}(5, \mathbb{C}) \quad \mathfrak{s p}(4, \mathbb{C})$
6) $\mathfrak{s p}(6, \mathbb{C})$
(b) (5 points) Partition the following Lie groups into classes so that those within each class have isomorphic Lie algebras and those in different classes have Lie algebras that are not isomorphic. $(U(1,1)$ denotes the subgroup of $G L(2, \mathbb{C})$ preserving the indefinite hermitian inner product $\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}$; $G L(1, \mathbb{H})$ denotes the group of non-zero quaternions.)

$$
\begin{gathered}
U(1) \times U(1) \quad U(1,1) \quad U(2) \quad S U(1,1) \times U(1) \quad S U(2) \times U(1) \\
O(3, \mathbb{R}) \times O(2, \mathbb{R}) \quad S O(3, \mathbb{R}) \times S O(2, \mathbb{R}) \quad S L(2, \mathbb{R}) \times \mathbb{R}^{\times} \quad G L(2, \mathbb{R}) \quad G L(1, \mathbb{H})
\end{gathered}
$$

Solution: 1) $U(1) \times U(1)$
2) $U(1,1) \quad S U(1,1) \times U(1) \quad S L(2, \mathbb{R}) \times \mathbb{R}^{\times} \quad G L(2, \mathbb{R})$
2) $U(2) \quad S U(2) \times U(1) \quad O(3, \mathbb{R}) \times O(2, \mathbb{R}) \quad S O(3, \mathbb{R}) \times S O(2, \mathbb{R}) \quad G L(1, \mathbb{H})$
4. (14 points) Consider the natural action of $S L(2, \mathbb{C})$ on $\mathbb{C P}^{1}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right] \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L(2, \mathbb{C}),\left[\begin{array}{l}
x \\
y
\end{array}\right] \in \mathbb{C P}^{1}
$$

and the induced Lie algebra map $\mathfrak{s l}(2, \mathbb{C}) \rightarrow \operatorname{Vect}\left(\mathbb{C P}^{1}\right)$.
Let $\mathbb{C}=\{x \neq 0\} \subset \mathbb{C P}^{1}$ be the complex line where the slope $s=y / x$ is well-defined.
(a) (2 points) Calculate the the image of

$$
Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
$$

under the induced map $\mathfrak{s l}(2, \mathbb{C}) \rightarrow \operatorname{Vect}(\mathbb{C})$
(a) \qquad ∂_{s} \qquad
Consider the ring of polynomial functions $\mathbb{C}[s]$ as an infinite-dimensional $\mathfrak{s l}(2, \mathbb{C})$-representation.
(b) (2 points) Calculate the formal character of $\mathbb{C}[s]$.

$$
\text { (b) } \sum_{n=0}^{\infty} e_{2 n}
$$

(c) (2 points) List the irreducible subrepresentations of $\mathbb{C}[s]$.
(c) \quad trivial $V_{0} \simeq \mathbb{C} \cdot 1$

Math 261A Midterm 2
(d) (2 points) List the irreducible quotient representations of $\mathbb{C}[s]$.
(d) \qquad Verma for $\mathfrak{b}^{o p}$ with lowest weight 2 \qquad
Let $\mathbb{C}^{\times}=\{x, y \neq 0\} \subset \mathbb{C P}^{1}$ be the punctured complex line where the slope $s=y / x$ and inverse slope $s^{-1}=x / y$ are both well-defined. Consider its ring of polynomial functions $\mathbb{C}\left[s, s^{-1}\right]$ as an infinitedimensional $\mathfrak{s l}(2, \mathbb{C})$-representation.
(e) (2 points) Calculate the formal character of $\mathbb{C}\left[s, s^{-1}\right]$.
(e) \qquad
(f) (2 points) List the irreducible subrepresentations of $\mathbb{C}\left[s, s^{-1}\right]$.
(f) \qquad trivial $V_{0} \simeq \mathbb{C} \cdot 1$
(g) (2 points) List the irreducible quotient representations of $\mathbb{C}\left[s, s^{-1}\right]$.
(g) Verma for \mathfrak{b} with highest weight -2 , Verma for $\mathfrak{b}^{o p}$ with lowest weight 2
5. (6 points) Consider the adjoint representation of $\mathfrak{s l}(3, \mathbb{C})$. For each listed representation of $\mathfrak{s l}(3, \mathbb{C})$, calculate the dimension of its subspace of invariants (multiplicity of trivial representation as a summand).
(a) (2 points) $\operatorname{Sym}^{2}(\mathfrak{s l}(3, \mathbb{C}))$?
\qquad
1
(b) $(2$ points $) \Lambda^{2}(\mathfrak{s l}(3, \mathbb{C}))$?
\qquad
(c) $(2$ points $) \Lambda^{3}(\mathfrak{s l}(3, \mathbb{C}))$?
(c) \qquad 1

