Grader SID:_

- 1. (10 points) State whether each assertion is always true (T) or sometimes false (F).
 - (a) (1 point) **F** The set of connected components $\pi_0(G)$ of a Lie group is an abelian group.
 - (b) (1 point) <u>**T**</u> The fundamental group $\pi_1(G, e)$ of a Lie group is an abelian group.
 - (c) (1 point) <u>T</u> A normal discrete subgroup $\Gamma \subset G$ of a connected Lie group is abelian.
 - (d) (1 point) **<u>F</u>** The universal cover of $SL(2, \mathbb{C})$ is contractible.
 - (e) (1 point) <u>**T**</u> The universal cover of $SL(2, \mathbb{R})$ is contractible.
 - (f) (1 point) $\underline{\mathbf{T}} \mathfrak{sl}(2, \mathbb{C}) \simeq \mathfrak{so}(3, \mathbb{C}).$
 - (g) (1 point) $\underline{\mathbf{F}} \mathfrak{sl}(2,\mathbb{R}) \simeq \mathfrak{so}(3,\mathbb{R}).$
 - (h) (1 point) **<u>F</u>** If G acts transitively on X, then the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is surjective.
 - (i) (1 point) <u>**T**</u> If G acts freely on X, then the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is injective.
 - (j) (1 point) **<u>F</u>** If G acts on X, and the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is injective, then G acts freely.
- 2. (10 points) Let $SL(2, \mathbb{C})$ be the Lie group of 2×2 complex matrices of determinant 1.
 - (a) (2 points) Describe the matrices in the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.

(a)
$$\frac{\begin{pmatrix} a & b \\ c & -a \end{pmatrix}}{, a, b, c}, d \in \mathbb{C}$$

Consider the element

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C})$$

(b) (2 points) Find the eigenvalues of the operator $ad_H : \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{sl}(2,\mathbb{C})$.

(b)
$$-2, 0, 2$$

- (c) (2 points) Find a basis of corresponding eigenvectors.
- (d) (2 points) Calculate the Killing form pairing $\langle H, H \rangle_K$.
- (e) (2 points) Calculate the matrix of the Killing form with respect to your basis.

$$(e) - \begin{pmatrix} 8 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 4 & 0 \end{pmatrix}$$

(d) <u>8</u>

3. (10 points) (a) (2 points) State the Jacobi identity.

(a) [x, [y, z]] = [[x, y], z] + [y, [x, z]]

(c) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

Let \mathfrak{g} be a Lie algebra. Define the Lie ideal $[\mathfrak{g},\mathfrak{g}] = span \langle [v,w] \in \mathfrak{g} | v,w \in \mathfrak{g} \rangle$. Calculate the Lie algebra $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ for the following.

(b) (2 points) $\mathfrak{gl}(2,\mathbb{C}) = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{C}\}$

(b) _____C

- Math 261A Midterm 1 (c) (2 points) $\mathfrak{sl}(2,\mathbb{C}) = \{A \in \mathfrak{gl}(2,\mathbb{C}), tr(A) = 0\}$
- (d) (2 points) $\mathfrak{b} = \{A \in \mathfrak{gl}(2, \mathbb{C}) \text{ upper triangular}\}$
- (e) (2 points) $\operatorname{Vect}(\mathbb{R}) = \{\operatorname{vector fields on } \mathbb{R}\}$
- be the Riemann sphere. Consider the action of $SL(2,\mathbb{R})$ on \mathbb{CP}^1 by fractional linear transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

- (a) (2 points) List the orbits.
- (b) (2 points) What is the stabilizer of z = 0?
- (c) (2 points) What is the stabilizer of z = i?

(d) (2 points) Calculate the image $\tilde{v} \in \operatorname{Vect}(\mathbb{CP}^1)$ of the vector $v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{R})$ under the infinitesimal action $\mathfrak{sl}(2,\mathbb{R}) \to \operatorname{Vect}(\mathbb{CP}^1)$.

(e) (2 points) Calculate the image $\tilde{v}_i \in T_0 \mathbb{CP}^1$ of the vector $v = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{R})$ under the restriction of the infinitesimal action $\mathfrak{sl}(2,\mathbb{R}) \to T_0\mathbb{CP}^1$ to $0 \in \mathbb{CP}^1$.

5. (10 points) Let G be a Lie group acting on a manifold X, and $\mathfrak{g} \to \operatorname{Vect}(X), v \mapsto \tilde{v}$ the corresponding infinitesimal action. Define the moment map

$$\mu:T^*X \longrightarrow \mathfrak{g}^* \qquad \quad \langle \mu(x,\xi),v\rangle = \xi(\tilde{v}_x) \qquad \quad v\in \mathfrak{g}, \xi\in T^*_xX$$

Calculate μ in the following cases using the identification $T^*\mathbb{R}^n \simeq \mathbb{R}^n \times (\mathbb{R}^n)^*$ to write the moment map in the form $\mu(x,\xi)$, for $x \in \mathbb{R}^n, \xi \in (\mathbb{R}^n)^*$.

(a) (2 points) Standard action $r \cdot x = rx$ of $G = GL(1, \mathbb{R})$ on $X = \mathbb{R}$.

(a) $\mu_v(x,\xi) = x\xi$ (b) (2 points) Hyperbolic action $r \cdot (x_1, x_2) = (rx_1, r^{-1}x_2)$ of $G = \operatorname{GL}(1, \mathbb{R})$ on $X = \mathbb{R}^2$.

(b) $\mu_v(x,\xi) = x_1\xi_1 - x_2\xi_2$

For the following cases, use the identification $T^*G \simeq G \times \mathfrak{g}^*$ induced by the identification $TG \simeq G \times \mathfrak{g}$ given by right-invariant vector fields to write the moment map in the form $\mu(g,\xi)$, for $g \in G, \xi \in \mathfrak{g}^*$.

(d) $\mathbb{C} \oplus \mathbb{C}$ (e) $\langle 0 \rangle$ 4. (10 points) Let $SL(2,\mathbb{R})$ be the Lie group of 2×2 real matrices of determinant 1. Let $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$

(a) $\mathbb{RP}^1, \mathbb{H}^+, \mathbb{H}^-$

(c) $\langle 0 \rangle$

(b) $\{\begin{pmatrix} r & u \\ c & 1 \end{pmatrix}\}, r \in \mathbb{R}^{\times}, u \in \mathbb{R}$

(c)
$$\left\{ \frac{\cos(\theta) - \sin(\theta)}{\sin(\theta) - \cos(\theta)} \right\}, \theta \in \mathbb{R}/2\pi$$

(e) _____0

$$(0) - ((0 - r^{-1})),$$

(d)
$$\underline{\partial_z}$$

Math 261A Midterm 1

(c)	(2 points)	Trivial action of G on itself.	
(d)	(2 points)	Left multiplication action of G on itself.	(c) $\mu(g,\xi) = 0$
(e)	(2 points)	Right multiplication action of G on itself.	(d) $\mu(g, \lambda) = \xi$
			(e) $\mu(g,\lambda) = Ad_g(\xi)$