Math 261A Midterm 1

Grader	CID.		
Carader	ינוור		

1.	(10 points) State whether	each assertion	is always true	(T)) or sometimes false ((\mathbf{F})).
----	------------	-----------------	----------------	----------------	-----	------------------------	----------------	----

- (a) (1 point) ____ The set of connected components $\pi_0(G)$ of a Lie group is an abelian group.
- (b) (1 point) ____ The fundamental group $\pi_1(G,e)$ of a Lie group is an abelian group.
- (c) (1 point) ____ A normal discrete subgroup $\Gamma \subset G$ of a connected Lie group is abelian.
- (d) (1 point) ____ The universal cover of $SL(2,\mathbb{C})$ is contractible.
- (e) (1 point) ____ The universal cover of $SL(2, \mathbb{R})$ is contractible.
- (f) (1 point) $\mathfrak{sl}(2,\mathbb{C}) \simeq \mathfrak{so}(3,\mathbb{C})$.
- (g) (1 point) $\mathfrak{sl}(2,\mathbb{R}) \simeq \mathfrak{so}(3,\mathbb{R})$.
- (h) (1 point) ____ If G acts transitively on X, then the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is surjective.
- (i) (1 point) ____ If G acts freely on X, then the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is injective.
- (j) (1 point) ____ If G acts on X, and the natural map $\mathfrak{g} \to \operatorname{Vect}(X)$ is injective, then G acts freely.
- 2. (10 points) Let $SL(2,\mathbb{C})$ be the Lie group of 2×2 complex matrices of determinant 1.
 - (a) (2 points) Describe the matrices in the Lie algebra $\mathfrak{sl}(2,\mathbb{C})$.

(a) _____

Consider the element

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{C})$$

- (b) (2 points) Find the eigenvalues of the operator $ad_H : \mathfrak{sl}(2,\mathbb{C}) \to \mathfrak{sl}(2,\mathbb{C})$.
- (b) _____

(c) (2 points) Find a basis of corresponding eigenvectors.

(c) _____

(d) (2 points) Calculate the Killing form pairing $\langle H, H \rangle_K$.

- (d) _____
- (e) (2 points) Calculate the matrix of the Killing form with respect to your basis.
- (e) _____

3. (10 points) (a) (2 points) State the Jacobi identity.

(a) _____

Let \mathfrak{g} be a Lie algebra. Define the Lie ideal $[\mathfrak{g},\mathfrak{g}] = span\langle [v,w] \in \mathfrak{g} \,|\, v,w \in \mathfrak{g} \rangle$. Calculate the Lie algebra $\mathfrak{g}/[\mathfrak{g},\mathfrak{g}]$ for the following.

(b) (2 points)
$$\mathfrak{gl}(2,\mathbb{C}) = \{A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, a, b, c, d \in \mathbb{C}\}$$

(b) _____

(c) (2 points)
$$\mathfrak{sl}(2,\mathbb{C}) = \{A \in \mathfrak{gl}(2,\mathbb{C}), tr(A) = 0\}$$

(c) _____

Math 261A Midterm 1

(d) (2 points) $\mathfrak{b} = \{ A \in \mathfrak{gl}(2, \mathbb{C}) \text{ upper triangular} \}$

(d) _____

(e) (2 points) $Vect(\mathbb{R}) = \{vector fields on \mathbb{R}\}\$

(e) _____

4. (10 points) Let $SL(2,\mathbb{R})$ be the Lie group of 2×2 real matrices of determinant 1. Let $\mathbb{CP}^1 = \mathbb{C} \cup \{\infty\}$ be the Riemann sphere. Consider the action of $SL(2,\mathbb{R})$ on \mathbb{CP}^1 by fractional linear transformations

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot z = \frac{az+b}{cz+d}$$

(a) (2 points) List the orbits.

(a) _____

(b) (2 points) What is the stabilizer of z = 0?

(b) _____

(c) (2 points) What is the stabilizer of z = i?

(c) _____

(d) (2 points) Calculate the image $\tilde{v} \in \text{Vect}(\mathbb{CP}^1)$ of the vector $v = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{R})$ under the infinitesimal action $\mathfrak{sl}(2,\mathbb{R}) \to \text{Vect}(\mathbb{CP}^1)$.

(d) _____

(e) (2 points) Calculate the image $\tilde{v}_i \in T_0 \mathbb{CP}^1$ of the vector $v = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \in \mathfrak{sl}(2, \mathbb{R})$ under the restriction of the infinitesimal action $\mathfrak{sl}(2, \mathbb{R}) \to T_0 \mathbb{CP}^1$ to $0 \in \mathbb{CP}^1$.

(e) _____

5. (10 points) Let G be a Lie group acting on a manifold X, and $\mathfrak{g} \to \operatorname{Vect}(X), v \mapsto \tilde{v}$ the corresponding infinitesimal action. Define the moment map

$$\mu: T^*X \longrightarrow \mathfrak{g}^*$$
 $\langle \mu(x,\xi), v \rangle = \xi(\tilde{v}_x)$ $v \in \mathfrak{g}, \xi \in T_x^*X$

Calculate μ in the following cases using the identification $T^*\mathbb{R}^n \simeq \mathbb{R}^n \times (\mathbb{R}^n)^*$ to write the moment map in the form $\mu(x,\xi)$, for $x \in \mathbb{R}^n, \xi \in (\mathbb{R}^n)^*$.

(a) (2 points) Standard action $r \cdot x = rx$ of $G = GL(1, \mathbb{R})$ on $X = \mathbb{R}$.

(a) _____

(b) (2 points) Hyperbolic action $r \cdot (x_1, x_2) = (rx_1, r^{-1}x_2)$ of $G = GL(1, \mathbb{R})$ on $X = \mathbb{R}^2$.

(b) _____

For the following cases, use the identification $T^*G \simeq G \times \mathfrak{g}^*$ induced by the identification $TG \simeq G \times \mathfrak{g}$ given by right-invariant vector fields to write the moment map in the form $\mu(g,\xi)$, for $g \in G, \xi \in \mathfrak{g}^*$.

(c) (2 points) Trivial action of G on itself.

(c) _____

Math 261A Midterm 1	
(d) (2 points) Left multiplication action of G on itself.	
	(d)
(e) (2 points) Right multiplication action of G on itself.	(%)
	(e)
	(0)