Math 261A Final

This is a take-home final due by email at noon on Monday, December 10, 2018.

- You must work independently and submit your own solutions.
- You may use any static resources: textbooks, websites, etc.

1. (8 points) Let G be a simple complex Lie group and $\rho: G \rightarrow \mathrm{GL}(V)$ a finite-dimensional complex representation. Let $d \rho: \mathfrak{g} \rightarrow \operatorname{End}(V)$ be the induced Lie algebra representation, and $\alpha_{\rho}: \mathfrak{g} \rightarrow \operatorname{Vect}^{a l g}(V)$ the induced infinitesimal action.
(a) (2 points) Find a natural isomorphism $\operatorname{End}(V) \simeq V \otimes V^{*}$.
(b) (2 points) Find a natural isomorphism $\operatorname{Vect}^{a l g}(V) \simeq \bigoplus_{n=0}^{\infty} \operatorname{Sym}^{n}\left(V^{*}\right) \otimes V$
(c) (2 points) Explain the relation between $d \rho$ and α_{ρ} under the prior identifications.
(d) (2 points) Calculate $d \rho$ and α_{ρ} on a basis of $\mathfrak{g}=\mathfrak{s l}(2, \mathbb{C})$ for ρ the standard representation of $G=\mathrm{SL}(2, \mathbb{C})$.
2. (6 points) For each rank 2 simple Lie algebra \mathfrak{g} :
(a) (2 points) Draw its root system and Dynkin diagram, and explain their relationship.
(b) (2 points) Choose a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ and highlight the corresponding simple roots, positive roots, dominant cone, and special point $-\rho$.
(c) (2 points) Find the coefficients of each positive root as a non-negative sum of simple roots, and mark the highest weight of the adjoint representation.
3. (12 points) Let G be a simple complex Lie group, and \mathcal{B} its flag variety of Borel subalgebras $\mathfrak{b} \subset \mathfrak{g}$.
(a) (2 points) Show the natural G-action on \mathcal{B} by conjugation induces an isomorphism $\mathfrak{g} / \mathfrak{b} \simeq T_{\mathfrak{b}} \mathcal{B}$ of B-representations for any $\mathfrak{b} \in \mathcal{B}$.
(b) (2 points) Calculate the weight of the one-dimensional B-representation $\wedge^{d}\left(T_{\mathfrak{b}} \mathcal{B}\right)$, where $d=\operatorname{dim} \mathcal{B}$, in terms of the positive roots of \mathfrak{g}.
(c) (2 points) For any $\mathfrak{b} \in \mathcal{B}$, show its orthogonal $\mathfrak{b}^{\perp} \subset \mathfrak{g}$ with respect to the Killing form is isomorphic to $\mathfrak{n}=[\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{g}$ as a B-representation.
(d) (2 points) Set $\tilde{\mathcal{N}}=\{(\mathfrak{b}, X) \in \mathcal{B} \times \mathfrak{g} \mid X \in \mathfrak{n}=[\mathfrak{b}, \mathfrak{b}]\}$. Use the previous parts and the isomorphism $\mathfrak{g}^{*} \simeq \mathfrak{g}$ given by the Killing form to find a G-equivariant isomorphism $T^{*} \mathcal{B} \simeq \tilde{\mathcal{N}}$.
(e) (2 points) Show under the previous identifications the moment map $\mu: T^{*} \mathcal{B} \rightarrow \mathfrak{g}^{*}$ of the G-action on \mathcal{B} is given by the projection $\tilde{\mathcal{N}} \rightarrow \mathfrak{g},(\mathfrak{b}, X) \mapsto X$.
(f) (2 points) For $G=\mathrm{SL}(3, \mathbb{C})$, describe the fibers $\mu^{-1}(X)$ as concretely as possible, in particular their dimensions, for X each of the matrices

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

4. (18 points) Fix $B_{0} \subset \mathrm{SL}(2, \mathbb{C})$ the Borel subgroup of upper triangular matrices, and the $\mathrm{SL}(2, \mathbb{C})$ equivariant isomorphism $\mathbb{P}^{1} \simeq \operatorname{SL}(2, \mathbb{C}) / B_{0}$ given by acting on $\ell_{0}=[1,0] \in \mathbb{P}^{1}$.
Consider the global sections functor

$$
\Gamma: D_{\mathbb{P}^{1}}-\bmod \longrightarrow U \mathfrak{s l}(2, \mathbb{C})
$$

from D-modules on the flag variety $\mathbb{P}^{1} \simeq \mathrm{SL}(2, \mathbb{C}) / B_{0}$ to $U \mathfrak{s l}(2, \mathbb{C})$-modules.

Math 261A Final

(a) (2 points) For $\ell \in \mathbb{P}^{1}$, consider the D-module $\Delta(\ell) \in D_{\mathbb{P}^{1}}-\bmod$ of delta-functions at $\ell \in \mathbb{P}^{1}$. Find a Borel subalgebra $\mathfrak{b} \subset \mathfrak{s l}(2, \mathbb{C})$ and a character $\chi: \mathfrak{b} \rightarrow \mathbb{C}$ and show the representation $\Gamma\left(\mathbb{P}^{1}, \Delta(\ell)\right)$ is isomorphic to the Verma module $U \mathfrak{g} \otimes_{U \mathfrak{b}} \mathbb{C}_{\chi}$.
(b) (2 points) For $\ell \in \mathbb{P}^{1}$, consider the D-module $\Delta\left(U_{\ell}\right) \in D_{\mathbb{P}^{1}}-\bmod$ of algebraic distributions on $U_{\ell}=\mathbb{P}^{1} \backslash\{\ell\}$. Find a Borel subalgebra $\mathfrak{b} \subset \mathfrak{s l}(2, \mathbb{C})$ and a character $\chi: \mathfrak{b} \rightarrow \mathbb{C}$ and show the representation $\Gamma\left(\mathbb{P}^{1}, \Delta\left(U_{\ell}\right)\right)$ is isomorphic to the Verma module $U \mathfrak{g} \otimes_{U \mathfrak{b}} \mathbb{C}_{\chi}$.
(c) (6 points) Show the above constructions exhaust all D-modules $M \in D_{\mathbb{P}^{1}}-\bmod$ whose global sections $\Gamma\left(\mathbb{P}^{1}, M\right)$ are isomorphic to a Verma module.
(d) (4 points) For $\ell \in \mathbb{P}^{1}$, consider the D-module $\mathcal{O}\left(U_{\ell}\right) \in D_{\mathbb{P}^{1}}-\bmod$ of functions on $U_{\ell}=\mathbb{P}^{1} \backslash\{\ell\}$. Find compatible filtrations of the D-module $\mathcal{O}\left(U_{\ell}\right)$ and the representation $\Gamma\left(\mathbb{P}^{1}, \mathcal{O}\left(U_{\ell}\right)\right)$ with associated graded a sum of irreducibles.
(e) (4 points) Show that the D-modules $\mathcal{O}\left(U_{\ell}\right)$ cannot be written as a complex of D-modules so that under global sections the representation $\Gamma\left(\mathbb{P}^{1}, \mathcal{O}\left(U_{\ell}\right)\right)$ is expressed as a complex of Verma modules.

