Math 261A Final

This is a take-home final due by email at noon on Monday, December 10, 2018.

- You must work independently and submit your own solutions.
- You may use any static resources: textbooks, websites, etc.
- 1. (8 points) Let G be a simple complex Lie group and $\rho : G \to \operatorname{GL}(V)$ a finite-dimensional complex representation. Let $d\rho : \mathfrak{g} \to \operatorname{End}(V)$ be the induced Lie algebra representation, and $\alpha_{\rho} : \mathfrak{g} \to \operatorname{Vect}^{alg}(V)$ the induced infinitesimal action.
 - (a) (2 points) Find a natural isomorphism $\operatorname{End}(V) \simeq V \otimes V^*$.
 - (b) (2 points) Find a natural isomorphism $\operatorname{Vect}^{alg}(V) \simeq \bigoplus_{n=0}^{\infty} \operatorname{Sym}^n(V^*) \otimes V$
 - (c) (2 points) Explain the relation between $d\rho$ and α_{ρ} under the prior identifications.
 - (d) (2 points) Calculate $d\rho$ and α_{ρ} on a basis of $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{C})$ for ρ the standard representation of $G = \mathrm{SL}(2,\mathbb{C})$.
- 2. (6 points) For each rank 2 simple Lie algebra \mathfrak{g} :
 - (a) (2 points) Draw its root system and Dynkin diagram, and explain their relationship.
 - (b) (2 points) Choose a Borel subalgebra $\mathfrak{b} \subset \mathfrak{g}$ and highlight the corresponding simple roots, positive roots, dominant cone, and special point $-\rho$.
 - (c) (2 points) Find the coefficients of each positive root as a non-negative sum of simple roots, and mark the highest weight of the adjoint representation.
- 3. (12 points) Let G be a simple complex Lie group, and \mathcal{B} its flag variety of Borel subalgebras $\mathfrak{b} \subset \mathfrak{g}$.
 - (a) (2 points) Show the natural *G*-action on \mathcal{B} by conjugation induces an isomorphism $\mathfrak{g}/\mathfrak{b} \simeq T_{\mathfrak{b}}\mathcal{B}$ of *B*-representations for any $\mathfrak{b} \in \mathcal{B}$.
 - (b) (2 points) Calculate the weight of the one-dimensional *B*-representation $\wedge^d(T_{\mathfrak{b}}\mathcal{B})$, where $d = \dim \mathcal{B}$, in terms of the positive roots of \mathfrak{g} .
 - (c) (2 points) For any $\mathfrak{b} \in \mathcal{B}$, show its orthogonal $\mathfrak{b}^{\perp} \subset \mathfrak{g}$ with respect to the Killing form is isomorphic to $\mathfrak{n} = [\mathfrak{b}, \mathfrak{b}] \subset \mathfrak{g}$ as a *B*-representation.
 - (d) (2 points) Set $\tilde{\mathcal{N}} = \{(\mathfrak{b}, X) \in \mathcal{B} \times \mathfrak{g} \mid X \in \mathfrak{n} = [\mathfrak{b}, \mathfrak{b}]\}$. Use the previous parts and the isomorphism $\mathfrak{g}^* \simeq \mathfrak{g}$ given by the Killing form to find a *G*-equivariant isomorphism $T^*\mathcal{B} \simeq \tilde{\mathcal{N}}$.
 - (e) (2 points) Show under the previous identifications the moment map $\mu: T^*\mathcal{B} \to \mathfrak{g}^*$ of the *G*-action on \mathcal{B} is given by the projection $\tilde{\mathcal{N}} \to \mathfrak{g}$, $(\mathfrak{b}, X) \mapsto X$.
 - (f) (2 points) For $G = SL(3, \mathbb{C})$, describe the fibers $\mu^{-1}(X)$ as concretely as possible, in particular their dimensions, for X each of the matrices

 $-\left(\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right), \quad \left(\begin{array}{ccc} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right)$

4. (18 points) Fix $B_0 \subset \mathrm{SL}(2,\mathbb{C})$ the Borel subgroup of upper triangular matrices, and the $\mathrm{SL}(2,\mathbb{C})$ -equivariant isomorphism $\mathbb{P}^1 \simeq \mathrm{SL}(2,\mathbb{C})/B_0$ given by acting on $\ell_0 = [1,0] \in \mathbb{P}^1$.

Consider the global sections functor

$$\Gamma: D_{\mathbb{P}^1} - \mathrm{mod} \longrightarrow U\mathfrak{sl}(2, \mathbb{C})$$

from *D*-modules on the flag variety $\mathbb{P}^1 \simeq \mathrm{SL}(2,\mathbb{C})/B_0$ to $U\mathfrak{sl}(2,\mathbb{C})$ -modules.

Math 261A Final

- (a) (2 points) For $\ell \in \mathbb{P}^1$, consider the *D*-module $\Delta(\ell) \in D_{\mathbb{P}^1}$ mod of delta-functions at $\ell \in \mathbb{P}^1$. Find a Borel subalgebra $\mathfrak{b} \subset \mathfrak{sl}(2, \mathbb{C})$ and a character $\chi : \mathfrak{b} \to \mathbb{C}$ and show the representation $\Gamma(\mathbb{P}^1, \Delta(\ell))$ is isomorphic to the Verma module $U\mathfrak{g} \otimes_{U\mathfrak{b}} \mathbb{C}_{\chi}$.
- (b) (2 points) For $\ell \in \mathbb{P}^1$, consider the *D*-module $\Delta(U_\ell) \in D_{\mathbb{P}^1}$ mod of algebraic distributions on $U_\ell = \mathbb{P}^1 \setminus \{\ell\}$. Find a Borel subalgebra $\mathfrak{b} \subset \mathfrak{sl}(2,\mathbb{C})$ and a character $\chi : \mathfrak{b} \to \mathbb{C}$ and show the representation $\Gamma(\mathbb{P}^1, \Delta(U_\ell))$ is isomorphic to the Verma module $U\mathfrak{g} \otimes_{U\mathfrak{b}} \mathbb{C}_{\chi}$.
- (c) (6 points) Show the above constructions exhaust all *D*-modules $M \in D_{\mathbb{P}^1}$ mod whose global sections $\Gamma(\mathbb{P}^1, M)$ are isomorphic to a Verma module.
- (d) (4 points) For $\ell \in \mathbb{P}^1$, consider the *D*-module $\mathcal{O}(U_\ell) \in D_{\mathbb{P}^1}$ -mod of functions on $U_\ell = \mathbb{P}^1 \setminus \{\ell\}$. Find compatible filtrations of the *D*-module $\mathcal{O}(U_\ell)$ and the representation $\Gamma(\mathbb{P}^1, \mathcal{O}(U_\ell))$ with associated graded a sum of irreducibles.
- (e) (4 points) Show that the *D*-modules $\mathcal{O}(U_{\ell})$ cannot be written as a complex of *D*-modules so that under global sections the representation $\Gamma(\mathbb{P}^1, \mathcal{O}(U_{\ell}))$ is expressed as a complex of Verma modules.