Muhammad Ali!

You pay for your room here on earth.

Service to others is the rent.

Eff: Give through 9.1 NS5

Wed office hours are back! 12-2pm, 891 Ems.

Lett's get ready to rumble!

Variation of Parameters

Lecture 22: Underdetermined Coeffs
Roots: \(r_1 = 2, r_2 = -1 \)

Factors:
\[
(x - 2)(x + 1) = 0
\]

Aux. eqn:
\[
r^2 - r - 2 = 0
\]
\[
y - y\frac{r}{2} - 2y = 0
\]

Homo eqn:
\[
y\left(\frac{r}{2} - 2\right) = 0
\]

Focus for today: Finding a soln to the two order IVP (homogeneous and non-homogeneous)
\[y' = \hat{a}e - \hat{t}e + \hat{a}t + \hat{a}t^2 \]

\[\hat{y}' = 2\hat{a} + 2\hat{a}t + \hat{a}t^2 \]

\[\hat{y}' = \hat{a}t + \hat{a}t^2 \]

To find \(a \): so try \(\hat{y}' = \alpha t^2 \)

Under coefs f = \(e \) is root of aux eqn

Back to nonhomog eqn

\(a = e, \; y = e^t \); \(y = e^t_1 + e^t_2 \)

Basis of solns to homog eqn
So \(yp = \frac{3}{1 + 2t} \).

Since \(f = e^{2t} \), conclude that \(a = \frac{1}{3} \).

Substituting back, \(yp - \frac{1}{4}p - 2yp = 3ae^{2t} \).
\[v^2_y + v^2_z = \left(\frac{1}{2} v^2_y \right) + \left(\frac{1}{2} v^2_z \right) = v^2_y + v^2_z \]

To find \(v^2_y \) and \(v^2_z \):

Try \(v^2_y = \frac{1}{2} v^2 + v^2 = \frac{1}{2} v^2 + v^2 - t \)

Now try Variation of Parameters
Let's assume \(y_1', y_2' \) to avoid later appearance of 2nd deriv
\[(x) \]
so \(y' = y_1 + y_2 \)

Given (*) 1, we have \(y_p = y_1' + y_2' \)

imply
\[(**) \]
Subst back into eqn ...

\[
\begin{align*}
 &y_1 + y_2 = f \\
 &y_1' + y_2' + b(y_1' + y_2' - y_p) = f \\
 &y_1' + y_2' = \frac{f + y_p}{b}
\end{align*}
\]
"lin syst" = lin syst for each t

\[
\begin{bmatrix}
 y_1 & y_2 \\
 0 & y_1 \\
 y_1 & y_2
\end{bmatrix}
\]

\[(**)

\[(*)\]

\text{Now use } (x_1) + (**) \text{ to solve for } y_1, y_2

\text{Key if only lst devices appeal!}

\text{Observe } (x) + (**) \text{ arc "lin syst" for } y, y'.
Note: Coeff matrix is invertible for all h_1, h_2.

Since $w = a + e + h_1 + h_2$, w is invertible for all h_1, h_2.

Since $y_1^2 = a + e + h_1 + h_2$, y_2.

Note: Coeff matrix is invertible for all h_1, h_2.
\[
\begin{align*}
W &= y_1y_2' \\
M &= \begin{bmatrix}
y_1 & y_2' \\
y_2' & -y_1 \\
\end{bmatrix}
\frac{M}{I} = \\
&= \begin{bmatrix}
y_1 & y_2' \\
y_2' & -y_1 \\
\end{bmatrix}
\begin{bmatrix}
y_1' \\
y_2' \\
\end{bmatrix} = \\
&= \begin{bmatrix}
y_1 \times t \\
y_2 \times t \\
\end{bmatrix}
\end{align*}
\]

It against any. vec.

Matrix and mult.

So to solve "Lin syst" invert coeff.
Good news: Find \(v_{22} \) by integrating.

Bad news: \(\int \frac{\text{d}y}{y_1 - y_2} \)

Conclude

\[v_{22} = \frac{1}{y_2 - y_1} \]
\[v_2 = \frac{e^{4t}}{-3e^t} \]
\[
\frac{v_1}{3} = \frac{e^t}{-3e^t} + C
\]
So find:
\[v_1 = \int \frac{1}{3e^t} \, dt = \frac{1}{3} + C \]
\[v = \int -3e^t \, dt = 1 + C \]

\[W = 2e^{2t} \cdot e^{2t} - e^{-t} - e^{-t} (2e^{2t}) \]
\[y_1 = e^{2t}, \quad y_2 = e^{-t} \]
\[f = e^{2t} \]
To find simple soln, take $c_1 = c_2 = 0$. Then

\[y_h = \frac{3}{1}te^{-t} + \frac{b}{1}e^{-t} + \frac{c_2}{1}e^{-t} + \frac{-1}{1}e^{-t} + \frac{2}{1}e^{-t} + \frac{2}{1}e^{-t} + \frac{1}{1}e^{-t} + \frac{1}{1}e^{-t} = y_p \]

Grand conclusion
Undertakers: \[\sum (\ldots) \hspace{1cm} \]

\[y'' + y = \cos \theta(t) \]

Find a soln to

On to Round 2

Round 1

1. Winners: Undertakers

2. Knockout

by knockout
to use real basis

\[u_1 = \cos(t) \]
\[u_2 = \sin(t) \]

Since

\[f = \sec(t) \]
\[\csc(t) \]

for homogenous

basis of solns

Time:

\[y_1 = e^t \]
\[y_2 = e^{-t} \]
\[r_1 = 1 \]
\[r_2 = -1 \]
\[y = c_1 e^t + c_2 e^{-t} \]

Aux:

\[y = x_1 + y \]
\[x_1 = 0 \]
\[y = 0 \]
\[x_1 = 1 \]
\[y = 0 \]
so \(v' = \int_{t}^{t + \Delta t} \frac{\dot{v}'}{\sqrt{\dot{v}^2 + \dot{y}^2 - y'^2}} \) \(\Delta t \)

\(v' = \frac{\dot{v}'}{\sqrt{\dot{v}^2 + \dot{y}^2 - y'^2}} \) \(y' = \sqrt{y''^2} \)

Simplify route as before gives
\[v_1 = \int -t + c \ dt = -\frac{\sin(t)}{\sin(t)} + c \]

\[v_2 = \int \sqrt{(\cot(t))^4 + 4} \]

\[v_1 = \frac{\sin(t)}{\sin(t)} = 1 \]

\[f = \frac{1}{\sqrt{1 + \frac{\sin^2(t)}{\sin^2(t)}}} = \sin(t) \]

Back to specific forms: \(n_1 = \cos(t), n_2 = \sin(t) \)
\[y_p = v_1 u_1 + v_2 u_2 \]

\[= (-t + c_1) \cos(t) + (\ln |\sin(t)| + c_2) \sin(t) \]

Set \(c_1 = c_2 = 0 \) to find a single soln

\[y_p = -t \cos(t) + \ln |\sin(t)| \sin(t) \]

Round 2 to Vaw of Params!
Wait a second! Have you taught us anything new?!

Claim All nth order lin ODE can be written as a system of 1st order lin ODE!
Set: $x_1 = 1 \quad \text{and} \quad x_2 = y$.

Think of it as an independent fn.

$Ex_{1, 2} = \{0 \} + by_1 + cy = f$.
\[\begin{align*}
 \lambda(t) &= \bar{q} + x \left[\begin{array}{cc}
 q & -2 \\
 1 & 0
 \end{array} \right] = x \\
 \begin{bmatrix}
 f+h-
 \\
 hq-
 \end{bmatrix}
 &=
 \begin{bmatrix}
 \bar{q} \\
 h
 \end{bmatrix}
 \\
 &= \begin{bmatrix}
 \bar{x} \\
 \bar{x}
 \end{bmatrix}
 = x
\end{align*} \]

Then