1. (a) Let \(B = \{ b_1 = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, b_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \} \) and \(C = \{ c_1 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}, c_2 = \begin{bmatrix} -2 \\ 1 \end{bmatrix} \} \) be bases of \(\mathbb{R}^2 \).

Find the change-of-coordinates matrix from \(B \) to \(C \).

(b) Let \(x = \begin{bmatrix} 5 \\ 10 \end{bmatrix} \). Using the fact that \([x]_B = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \), find the coordinates of \(x \) with respect to the \(C \) basis.

Solution: (a) P from \(B \) to \(C \) is \(\begin{bmatrix} 7/5 & 4/5 \\ -6/5 & -7/5 \end{bmatrix} \).

(b) Multiply \(P \) on the right by \([x]_B \) to get \([x]_C = \begin{bmatrix} 5 \\ -5 \end{bmatrix} \). A simple row reduction lets you use this answer to check your matrix from part (a). Make sure you see why this is true.

2. Find the eigenvalues of \(A = \begin{bmatrix} 3 & 4 \\ 3 & 2 \end{bmatrix} \) and one corresponding eigenvector for each eigenvalue.

Solution: The eigenvalues of \(A \) are 6 and \(-1\).

One corresponding eigenvector for \(\lambda = 6 \) is \(\begin{bmatrix} 4/3 \\ 1 \end{bmatrix} \). Scalar multiples of this vector except for the vector \(\begin{bmatrix} 0 \\ 0 \end{bmatrix} \) would be acceptable eigenvectors.

A corresponding eigenvector in the eigenspace of \(A \) for \(\lambda = -1 \) is \(\begin{bmatrix} -1 \\ 1 \end{bmatrix} \).

Again, scalar multiples of this vector except for the zero vector are acceptable eigenvectors.