1. Provide an example of the following, or explain why no such example can exist:

(a) Vectors $u, v \in \mathbb{R}^2$ with $u \cdot v = 3$ such that $\{u, v\}$ is also a basis for \mathbb{R}^2 .

Solution: Let $u=\left[\begin{array}{c} a \\ b \end{array}\right]$ and $v=\left[\begin{array}{c} c \\ d \end{array}\right]$. Then we seek:

$$u\cdot v=ac+bd=3$$

To ensure this is a basis, we also need:

$$ad - bc \neq 0$$

For example we can do $a=2,\,b=c=d=1.$

(b) Vectors $u, v \in \mathbb{R}^3$ with ||u + v|| > ||u|| + ||v||.

Solution: This is impossible by the triangle inequality, which says $||u+v|| \le ||u|| + ||v||$.

(c) Vectors $u, v, w \in \mathbb{R}^3$ such that $\{u, v, w\}$ is an orthogonal set.

Solution: Take $u = e_1, v = e_2, w = 0.$

- 2. Let A be an $n \times n$ matrix with real coefficients.
 - (a) Show that A is not invertible if and only if 0 is an eigenvalue of A.

Solution: 0 is an eigenvalue of $A \Leftrightarrow 0$ is a root of $\chi_A \Leftrightarrow \det(A - 0 \cdot \mathrm{Id}) = 0 \Leftrightarrow \det A = 0$.

(b) Given that A has only one eigenvalue over $\mathbb C$ (with multiplicity n) and is diagonalisable show that A is diagonal.

Solution: Suppose that $P^{-1}AP = \lambda \cdot \text{Id}$ for λ the unique eigenvalue of A. Then $A = P(\lambda \cdot \text{Id})P^{-1} = \lambda \cdot \text{Id}$.

(c) Conclude that

$$B = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right)$$

is not diagonalisable.

Solution: $det(A-z \operatorname{Id}) = (1-z)^3$ so the only eigenvalue of B is 1. However, B is not diagonal and so by (b) cannot be diagonalisable.

3. (10 points) Find a basis for the orthogonal complement of the image of the linear transformation $T: \mathbb{P}_3 \to \mathbb{R}^4$ defined as following:

$$T(a_0 + a_1t + a_2t^2 + a_3t^3) = \begin{bmatrix} a_0 + a_1 + 2a_2 - a_3 \\ 2a_1 + 4a_2 - 2a_3 \\ -2a_0 \\ 0 \end{bmatrix}$$

Solution: The matrix for T relative to the basis $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 is

$$\left[\begin{array}{ccccc}
1 & 1 & 2 & -1 \\
0 & 2 & 4 & -2 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

So the image of T is the column space of the matrix above, say A. Note that the orthogonal complement is the null space of A^T . The RREF of A^T is

$$\left[\begin{array}{ccccc}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]$$

This gives a basis

$$\left\{ \begin{bmatrix} 2\\-1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1 \end{bmatrix} \right\}$$

for $\operatorname{Nul}(A^T) = \operatorname{Col}(A)^{\perp} = \operatorname{Im}(T)^{\perp}$.

Math 54

Practice Midterm 2 Questions

- 4. Given a matrix $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$. Recall that the trace of A, denoted as tr(A), is the sum of all the matrix entries on the diagonal of the matrix. Complete the following tasks:
 - (a) Write out the characteristic polynomial of matrix A in terms of tr(A) and det(A).

Solution:

$$det(A - \lambda I) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21}$$
$$= (a_{11}a_{22} - a_{12}a_{21}) - \lambda (a_{11} + a_{22}) + \lambda^{2}$$
$$= \lambda^{2} - \lambda tr(A) + det(A) = 0$$

(b) In order for the matrix A to have all-real eigenvalues, what must be true about Tr(A) and Det(A)? Justify your answer.

Solution: For there to be all-real eigenvalues, the characteristic equations, which is also a quadratic equation, must have real solution for the roots.

$$\lambda = \frac{tr(A) \pm \sqrt{tr(A)^2 - 4det(A)}}{2}$$
$$tr(A)^2 - 4det(A) \ge 0$$
$$det(A) \le \left(\frac{tr(A)}{2}\right)^2$$

- 5. Below all matrices are $n \times n$ matrices with real coefficients. Mark the following as true or false.
 - (a) A must have an even number of non-real eigenvalues.

Solution: True, either with or without multiplicity. It's easier to explain why the answer is yes without multiplicity: if $\lambda = a + bi$ is an eigenvalue with $b \neq 0$ and complex eigenvector $v \in \mathbb{C}^n$, then its complex conjugate $\overline{\lambda} = a - bi$ must also be an eigenvalue, with eigenvector \overline{v} (this means we take the complex conjugate of every entry of v). So the non-real eigenvalues come in conjugate pairs.

(b) If $v_1, v_2 \in \mathbb{R}^n$ are eigenvectors of A with different eigenvalues $\lambda_1 \neq \lambda_2$, then v_1 and v_2 are linearly independent.

Solution: True. If $c_1v_1 + c_2v_2 = 0$, then applying A gives

$$A(c_1v_1 + c_2v_2) = c_1Av_1 + c_2Av_2 (1)$$

$$= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2 \tag{2}$$

$$= 0. (3)$$

Subtracting $\lambda_1(c_1v_1+c_2v_2)=0$ gives $c_2(\lambda_2-\lambda_1)v_2=0$, and since $v_2\neq 0$ (being an eigenvector) and $\lambda_1-\lambda_2\neq 0$ (by assumption), we get $c_2=0$. This gives $c_1v_1=0$, and since $v_1\neq 0$ this gives $c_1=0$.

(c) If $v_1, v_2 \in \mathbb{R}^n$ are eigenvectors of A with different eigenvalues $\lambda_1 \neq \lambda_2$, then v_1 and v_2 are orthogonal.

Solution: False. For example, $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ has two eigenvalues 1,0 with eigenvectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

and $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ which are not orthogonal, although they are linearly independent. More generally, specifying a pair of linearly independent vectors v_1, v_2 in \mathbb{R}^2 and a pair of distinct eigenvalues $\lambda_1 \neq \lambda_2$ for them uniquely specifies a matrix $A = PDP^{-1}$, where D is the diagonal matrix with entries λ_1, λ_2 and P is the matrix whose columns are v_1 and v_2 . In this construction there's no reason for v_1 and v_2 to be orthogonal.

However, this is true if A is symmetric $(A = A^T)$.

(d) The dimension of Nul(A) is the multiplicity of 0 as an eigenvalue of A.

Solution: False. The dimension of Nul(A) is at most the multiplicity of 0 as an eigenvalue of A, but can be less than it. For example, the matrix $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has the property that

 $\dim \text{Nul}(A) = 1$, with basis $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$, but it has characteristic polynomial λ^2 , so the multiplicity of 0 as an eigenvalue is 2.

However, this is true if A is diagonalizable.

(e) The eigenvalues of AB are the product of the eigenvalues of A and B.

Solution: False. This statement should seem quite suspicious because the eigenvalues of a matrix don't come in any distinguished order, so there's no distinguished way to match up an

eigenvalue of A with an eigenvalue of B to multiply them and get an eigenvalue of AB. For an explicit counterexample, take

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \tag{4}$$

The eigenvalues of A and B are both just 0, but AB has eigenvalues both 0 and 1.

However, this is true if A and B are simultaneously diagonalizable: that is, there is a single matrix P such that $A = PD_AP^{-1}$ and $B = PD_BP^{-1}$ where D_A, D_B are diagonal.

- 6. Let A be an $n \times n$ matrix with characteristic polynomial $-\lambda(\lambda-1)^2$. Explain whether or not the following can be true, and if it can, give an example:
 - (a) Rank(A) = 0
 - (b) Rank(A) = 1
 - (c) Rank(A) = 2
 - (d) Rank(A) = 3

Solution: The dimension of an eigenspace for an eigenvalue λ is always less than or equal to the multiplicity of λ in the characteristic polynomial. In this case, $\lambda=0$ has multiplicity 1, so the $\lambda=0$ eigenspace has dimension less than or equal to 1. However the $\lambda=0$ eigenspace has to be at least one dimensional because $\lambda=0$ is an eigenvalue, which means it has some nonzero eigenvector. So the $\lambda=0$ eigenspace is exactly 1 dimensional. Since the $\lambda=0$ eigenspace is the same as the null space, we see that $\operatorname{Rank}(A)=3-1=2$. Thus a, b, and d are impossible.

To see that c) is possible, consider:

$$A = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \right]$$

.

7. Let $T: M_{2\times 2} \to M_{2\times 2}$ be the linear transformation given by

$$T(A) = A^T$$

where A^T is the transpose of A.

(a) Is T an isomorphism? If so, describe T^{-1} .

Solution: Yes. $T^{-1} = T$ since $(A^T)^T = A$.

(b) Find the eigenvalues of T and the dimensions of the eigenspaces.

Solution: This can be done by writing a matrix of A, but it can actually be done directly. Suppose we have

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Then, $a = \lambda a$, $c = \lambda b$, $b = \lambda c$, and $d = \lambda d$. If a or d is nonzero, these imply immediately that $\lambda = 1$. Otherwise, either c or b is not zero, then either $c = \lambda b = \lambda^2 c$ or $b = \lambda^2 b$ implies that $\lambda = \pm 1$. Thus, the eigenvalues of T are 1 and -1.

For $\lambda = 1$, we have must have c = b and no other conditions. Thus, the eigenspace for $\lambda = 1$ is

$$\left\{ \begin{pmatrix} a & b \\ b & d \end{pmatrix} : a,b,d \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}$$

and this eigenspace has dimension equal to 3.

For $\lambda = -1$, we must have a = 0 since a = -a and similarly d = 0. We also have b = -c. Thus, the eigenspace is

$$\left\{ \begin{pmatrix} 0 & b \\ -b & 0 \end{pmatrix} : b \in \mathbb{R} \right\} = \operatorname{Span} \left\{ \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right\}$$

and this eigenspace has dimension equal to 1.

(c) Is there a basis for $M_{2\times 2}$ such that the matrix of T is diagonal with respect to this basis?

Solution: Yes. The sum of the dimensions of the eigenspaces is

$$3+1=4=\dim M_{2\times 2}$$

so there is a basis for which the matrix of T is diagonal with respect to that basis. Namely, combining the two bases listed in the solution of the previous part will give one such basis.