1. Provide an example of the following, or explain why no such example can exist:
 (a) Vectors $u, v \in \mathbb{R}^2$ with $u \cdot v = 3$ such that $\{u, v\}$ is also a basis for \mathbb{R}^2.

 Solution: Let $u = \begin{bmatrix} a \\ b \end{bmatrix}$ and $v = \begin{bmatrix} c \\ d \end{bmatrix}$. Then we seek:

 $$u \cdot v = ac + bd = 3$$

 To ensure this is a basis, we also need:

 $$ad - bc \neq 0$$

 For example we can do $a = 2$, $b = c = d = 1$.

 (b) Vectors $u, v \in \mathbb{R}^3$ with $\|u + v\| > \|u\| + \|v\|$.

 Solution: This is impossible by the triangle inequality, which says $\|u + v\| \leq \|u\| + \|v\|$.

 (c) Vectors $u, v, w \in \mathbb{R}^3$ such that $\{u, v, w\}$ is an orthogonal set.

 Solution: Take $u = e_1$, $v = e_2$, $w = 0$.
2. Let A be an $n \times n$ matrix with real coefficients.

(a) Show that A is not invertible if and only if 0 is an eigenvalue of A.

Solution: 0 is an eigenvalue of $A \iff 0$ is a root of $\chi_A \iff \det(A - 0 \cdot \text{Id}) = 0 \iff \det A = 0$.

(b) Given that A has only one eigenvalue over \mathbb{C} (with multiplicity n) and is diagonalisable show that A is diagonal.

Solution: Suppose that $P^{-1}AP = \lambda \cdot \text{Id}$ for λ the unique eigenvalue of A. Then $A = P(\lambda \cdot \text{Id})P^{-1} = \lambda \cdot \text{Id}$.

(c) Conclude that

$$B = \begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}$$

is not diagonalisable.

Solution: $\det(A - z \text{Id}) = (1 - z)^3$ so the only eigenvalue of B is 1. However, B is not diagonal and so by (b) cannot be diagonalisable.
3. (10 points) Find a basis for the orthogonal complement of the image of the linear transformation $T : \mathbb{P}_3 \rightarrow \mathbb{R}^4$ defined as following:

$$T(a_0 + a_1 t + a_2 t^2 + a_3 t^3) = \begin{bmatrix} a_0 + a_1 + 2a_2 - a_3 \\ 2a_1 + 4a_2 - 2a_3 \\ -2a_0 \\ 0 \end{bmatrix}$$

Solution: The matrix for T relative to the basis $\{1, t, t^2, t^3\}$ for \mathbb{P}_3 and the standard basis for \mathbb{R}^4 is

$$
\begin{bmatrix}
1 & 1 & 2 & -1 \\
0 & 2 & 4 & -2 \\
-2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

So the image of T is the column space of the matrix above, say A. Note that the orthogonal complement is the null space of A^T. The RREF of A^T is

$$
\begin{bmatrix}
1 & 0 & -2 & 0 \\
0 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
$$

This gives a basis

$$\left\{ \begin{bmatrix} 2 \\ -1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$$

for $\text{Nul}(A^T) = \text{Col}(A)^\perp = \text{Im}(T)^\perp$.

4. Given a matrix \(A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \). Recall that the trace of \(A \), denoted as \(tr(A) \), is the sum of all the matrix entries on the diagonal of the matrix. Complete the following tasks:

(a) Write out the characteristic polynomial of matrix \(A \) in terms of \(tr(A) \) and \(det(A) \).

Solution:

\[
\det(A - \lambda I) = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}a_{21} \\
= (a_{11}a_{22} - a_{12}a_{21}) - \lambda (a_{11} + a_{22}) + \lambda^2 \\
= \lambda^2 - \lambda tr(A) + det(A) = 0
\]

(b) In order for the matrix \(A \) to have all-real eigenvalues, what must be true about \(Tr(A) \) and \(Det(A) \)? Justify your answer.

Solution: For there to be all-real eigenvalues, the characteristic equations, which is also a quadratic equation, must have real solution for the roots.

\[
\lambda = \frac{tr(A) \pm \sqrt{tr(A)^2 - 4det(A)}}{2} \\
tr(A)^2 - 4det(A) \geq 0 \\
det(A) \leq \left(\frac{tr(A)}{2} \right)^2
\]
5. Below all matrices are \(n \times n \) matrices with real coefficients. Mark the following as true or false.

(a) \(A \) must have an even number of non-real eigenvalues.

Solution: True, either with or without multiplicity. It’s easier to explain why the answer is yes without multiplicity: if \(\lambda = a + bi \) is an eigenvalue with \(b \neq 0 \) and complex eigenvector \(v \in \mathbb{C}^n \), then its complex conjugate \(\overline{\lambda} = a - bi \) must also be an eigenvalue, with eigenvector \(\overline{v} \) (this means we take the complex conjugate of every entry of \(v \)). So the non-real eigenvalues come in conjugate pairs.

(b) If \(v_1, v_2 \in \mathbb{R}^n \) are eigenvectors of \(A \) with different eigenvalues \(\lambda_1 \neq \lambda_2 \), then \(v_1 \) and \(v_2 \) are linearly independent.

Solution: True. If \(c_1 v_1 + c_2 v_2 = 0 \), then applying \(A \) gives

\[
A(c_1 v_1 + c_2 v_2) = c_1 Av_1 + c_2 Av_2
\]

\[
= c_1 \lambda_1 v_1 + c_2 \lambda_2 v_2
\]

\[
= 0.
\]

Subtracting \(\lambda_1 (c_1 v_1 + c_2 v_2) = 0 \) gives \(c_2 (\lambda_2 - \lambda_1) v_2 = 0 \), and since \(v_2 \neq 0 \) (being an eigenvector) and \(\lambda_1 - \lambda_2 \neq 0 \) (by assumption), we get \(c_2 = 0 \). This gives \(c_1 v_1 = 0 \), and since \(v_1 \neq 0 \) this gives \(c_1 = 0 \).

(c) If \(v_1, v_2 \in \mathbb{R}^n \) are eigenvectors of \(A \) with different eigenvalues \(\lambda_1 \neq \lambda_2 \), then \(v_1 \) and \(v_2 \) are orthogonal.

Solution: False. For example, \(A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \) has two eigenvalues 1, 0 with eigenvectors \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \) and \(\begin{bmatrix} 1 \\ -1 \end{bmatrix} \) which are not orthogonal, although they are linearly independent. More generally, specifying a pair of linearly independent vectors \(v_1, v_2 \) in \(\mathbb{R}^2 \) and a pair of distinct eigenvalues \(\lambda_1 \neq \lambda_2 \) for them uniquely specifies a matrix \(A = PDP^{-1} \), where \(D \) is the diagonal matrix with entries \(\lambda_1, \lambda_2 \) and \(P \) is the matrix whose columns are \(v_1 \) and \(v_2 \). In this construction there’s no reason for \(v_1 \) and \(v_2 \) to be orthogonal.

However, this is true if \(A \) is symmetric (\(A = A^T \)).

(d) The dimension of \(\text{Nul}(A) \) is the multiplicity of 0 as an eigenvalue of \(A \).

Solution: False. The dimension of \(\text{Nul}(A) \) is at most the multiplicity of 0 as an eigenvalue of \(A \), but can be less than it. For example, the matrix \(A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) has the property that \(\dim \text{Nul}(A) = 1 \), with basis \(\begin{bmatrix} 1 \\ 0 \end{bmatrix} \), but it has characteristic polynomial \(\lambda^2 \), so the multiplicity of 0 as an eigenvalue is 2.

However, this is true if \(A \) is diagonalizable.

(e) The eigenvalues of \(AB \) are the product of the eigenvalues of \(A \) and \(B \).

Solution: False. This statement should seem quite suspicious because the eigenvalues of a matrix don’t come in any distinguished order, so there’s no distinguished way to match up an
eigenvalue of A with an eigenvalue of B to multiply them and get an eigenvalue of AB. For an explicit counterexample, take

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, AB = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}. \quad (4)$$

The eigenvalues of A and B are both just 0, but AB has eigenvalues both 0 and 1. However, this is true if A and B are simultaneously diagonalizable: that is, there is a single matrix P such that $A = PD_AP^{-1}$ and $B = PD_BP^{-1}$ where D_A, D_B are diagonal.
6. Let A be an $n \times n$ matrix with characteristic polynomial $-\lambda(\lambda-1)^2$. Explain whether or not the following can be true, and if it can, give an example:

- (a) Rank$(A) = 0$
- (b) Rank$(A) = 1$
- (c) Rank$(A) = 2$
- (d) Rank$(A) = 3$

Solution: The dimension of an eigenspace for an eigenvalue λ is always less than or equal to the multiplicity of λ in the characteristic polynomial. In this case, $\lambda = 0$ has multiplicity 1, so the $\lambda = 0$ eigenspace has dimension less than or equal to 1. However the $\lambda = 0$ eigenspace has to be at least one dimensional because $\lambda = 0$ is an eigenvalue, which means it has some nonzero eigenvector. So the $\lambda = 0$ eigenspace is exactly 1 dimensional. Since the $\lambda = 0$ eigenspace is the same as the null space, we see that Rank$(A) = 3 - 1 = 2$. Thus a), b) and d) are impossible.

To see that c) is possible, consider:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$
Let $T : M_{2 \times 2} \rightarrow M_{2 \times 2}$ be the linear transformation given by $T(A) = A^T$ where A^T is the transpose of A.

(a) Is T an isomorphism? If so, describe T^{-1}.

Solution: Yes. $T^{-1} = T$ since $(A^T)^T = A$.

(b) Find the eigenvalues of T and the dimensions of the eigenspaces.

Solution: This can be done by writing a matrix of A, but it can actually be done directly. Suppose we have

\[
\begin{pmatrix} a & c \\ b & d \end{pmatrix} = T \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \lambda \begin{pmatrix} a & b \\ c & d \end{pmatrix}.
\]

Then, $a = \lambda a$, $c = \lambda b$, $b = \lambda c$, and $d = \lambda d$. If a or d is nonzero, these imply immediately that $\lambda = 1$. Otherwise, either c or b is not zero, then either $c = \lambda b = \lambda^2 c$ or $b = \lambda^2 b$ implies that $\lambda = \pm 1$. Thus, the eigenvalues of T are 1 and -1.

For $\lambda = 1$, we have must have $c = b$ and no other conditions. Thus, the eigenspace for $\lambda = 1$ is

\[
\left\{ \begin{pmatrix} a \\ b \\ d \end{pmatrix} : a, b, d \in \mathbb{R} \right\} = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \right\}
\]

and this eigenspace has dimension equal to 3.

For $\lambda = -1$, we must have $a = 0$ since $a = -a$ and similarly $d = 0$. We also have $b = -c$. Thus, the eigenspace is

\[
\left\{ \begin{pmatrix} 0 \\ b \\ -b \\ 0 \end{pmatrix} : b \in \mathbb{R} \right\} = \text{Span} \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix} \right\}
\]

and this eigenspace has dimension equal to 1.

(c) Is there a basis for $M_{2 \times 2}$ such that the matrix of T is diagonal with respect to this basis?

Solution: Yes. The sum of the dimensions of the eigenspaces is

$3 + 1 = 4 = \dim M_{2 \times 2}$

so there is a basis for which the matrix of T is diagonal with respect to that basis. Namely, combining the two bases listed in the solution of the previous part will give one such basis.