Today: Office Hours 1-3 pm
3E2, E3
Lecture 8

Determinant Day

Welcome to

Friday: Quiz through 9:33
Review

of 2x2
determinants.

\[
A = \begin{vmatrix} a & b \\ c & d \end{vmatrix}
\]

\[
\det(A) = \begin{vmatrix} a \\ c \end{vmatrix}
\]

Theorem (Geometric Interpretation of det)

\[
\det(A) = ad - bc
\]

\[
\text{Area of parallelogram with sides the row vectors of A}
\]

\[
\text{not put the row}
\]

\[
\text{det(A)}
\]
Let's see how both sides change under row ops.

Why is this true?

\[\det(\mathbf{A}) \]

Area

\(\neq 0 \)

R3) scale by \(k \)

unchanged

unchanged

unchanged

unchanged

(\(R2 \)) exchange rows

to another row

(\(R1 \)) add

unchanged

unchanged

unchanged

unchanged

(\(\det \mathbf{A} \))

unchanged

unchanged

unchanged

unchanged

(\(R2 \)) exchange

unchanged

unchanged

unchanged

unchanged

R1) scale

unchanged

unchanged

unchanged

unchanged

(\(R2 \)) exchange

unchanged

unchanged

unchanged

unchanged

R3) scale by \(k \)

unchanged

unchanged

unchanged

unchanged
Assume $A \in \text{REF}$. To prove the theorem, it suffices now to prove

\[
\begin{array}{cccc}
| 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
\end{array}
\]

Possibilities

$$|\text{det}(A)|$$
2) Similar calculation for matrices in REF

Satisfying: 1) Similar behavior under row ops

We will introduce its determinant

Rest of lecture: for an n x n matrix,
Take $A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$

Suppose we know det of matrices up to size $(n-1) \times (n-1)$.

Inductive Definition: $\det(A) = \prod_{i=1}^{n} a_{ii}$
\[
\det(A) = a_{11} \det(A_{11}) + a_{12} \det(A_{12}) + \ldots + a_{1n} \det(A_{1n}) + (-1)^{1+n} \det(A_{1n+1}) + \ldots \\
\]

Sum over row 1

Set \(A_{ij} \) = row matrix

\[
A_{ii} = (n-1) \times (n-1)
\]
\[
\begin{bmatrix}
-5 \\
1 \\
-2
\end{bmatrix}
\]

\[
= 1 \cdot (-6) - 2 \cdot (1) + 1 \cdot (3)
\]

\[
\det(A) = 1 \cdot \det\begin{bmatrix}
-2 \\
1
\end{bmatrix}
\]

\[
= \det\begin{bmatrix}
-1 & 0 & -2 \\
1 & 3 & 1 \\
2 & 1 & 1
\end{bmatrix}
\]

\[
= 8
\]

\[
\det(A) = 1 \cdot 2 - 2 \cdot (\cdot 3)
\]

Ex 1: Calc. \(\det(A)\) for following \(A\).
Key properties of determinant

1. Behavior under row ops

E: Element
A: A
A': \text{EA}
\[\text{det}(A) = 1, 2, \ldots, n \]

\[n \text{ pivots} \]

\[A = \begin{bmatrix} 2 \text{ in REF} \\ \end{bmatrix} \]

\[\text{det}(A) = 0 \]

\[n \text{ pivots} \]

\[\text{stand} \]

\[A = \begin{bmatrix} 0 & \ldots & 0 & x \\ \vdots & \ddots & \vdots & \vdots \\ 0 & \ldots & 0 & x \\ x & \ldots & x & x \end{bmatrix} \]
for lower Ω-ear matrices
We'll also see this is true
entries
then det(Λ) = product of diag entries.

Observe: If A is upper Ω-ear
Theorem (Geometric Interpretation) \[\text{det}(\mathbf{A}) = \text{Volume of Parallelipiped} \]

With edges the rows of \(\mathbf{A} \).
For A in REF, $\det(A) \neq 0$.

Thus it suffices to prove the theorem.

A invertible $\iff A^{-1}$ exists.

Proof: Apply row ops $A \rightarrow A$.

For A invertible, $\det(A) \neq 0$.

Theorem 4
Theorem 5

In particular: $\det(A^n) = (\det(A))^n$

In particular: $\det(A) = \det(A^1) = \det(A)$.

If A exists:

$\det(1^n) = 1$

Idea of proof: Expand $A'B$ as products of elem. matrices.

Then calculate by induction on # of elem. matrices of elem. matrices applying

Proof
Lin Indep
Span Rn & A
Cols of A
Lin Indep
Span Rn & B
Rows of A
Nice consequence
6. Theorem det(ATA) = det(A)
\[
A = \begin{vmatrix}
2 & 3 \\
4 & 5
\end{vmatrix}
\]

When \(n=2\), we can expand determinant to find: \(A = \begin{vmatrix}a & b \\
c & d\end{vmatrix} = ad - bc\)
\[A = \text{Cofactor Expansion} \]

\[\text{Cofactors } C_{ij} = (-1)^{i+j} \text{det}(A_{ij}) \]

For an \(n \times n \) matrix \(A \).
Theorem (Cofactor Expansion)

\[\det(A) = a_{i1} C_{i1} + a_{i2} C_{i2} + \ldots + a_{in} C_{in} \]
(row i expansion)

\[\det(A) = a_{1j} C_{1j} + a_{2j} C_{2j} + \ldots + a_{nj} C_{nj} \]
(col j expansion)

Note: row 1 expansion = definition of \(\det \)
\[
\det(A) = 1 \cdot (1) = 1.
\]

\[
\det(A) = (-1)(-3) = 3
\]

Exercise (Calculate \(\det(A)\) for)