1. Is the set W of 2×2 symmetric matrices a subspace of the vector space V of all 2×2 matrices?

(Recall that a matrix A is symmetric if and only if $A^T = A$. Equivalently, a symmetric 2×2 matrix is of the form $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.)
2. Let \(B = \left\{ \begin{bmatrix} 1 \\ -4 \end{bmatrix}, \begin{bmatrix} 2 \\ -3 \end{bmatrix} \right\} \) be a basis of \(\mathbb{R}^2 \).

a. Calculate the change-of-coordinates matrix \(P_B \) from \(B \) to the standard basis of \(\mathbb{R}^2 \).

b. Use part a. to calculate \([x]_B \) given \(x = \begin{bmatrix} -1 \\ -6 \end{bmatrix} \).