1. a) Suppose that T were self-adjoint. Then, the Spectral Theorem tells us that there would exist an orthonormal basis of $P_2(\mathbb{R})$, (p_1, p_2, p_3), consisting of eigenvectors of T. It is straightforward to see, by inspection of T, that the eigenvalues of T are $\lambda = 0, 1$ and that

$$T(v) = 0 \iff v \in \text{null}(T) = \{a_0 + a_2x^2 \mid a_0, a_2 \in \mathbb{R}\},$$

$$T(v) = v \iff v \in \text{span}(x).$$

Thus, we have $p_1, p_2 \in \text{null}(T)$, with $\langle p_1, p_2 \rangle = 0$ and $||p_1|| = ||p_2|| = 1$. The remaining eigenvector p_3 must be an element of $\text{span}(x)$, so that $p_3 = cx$, for some (nonzero) $c \in \mathbb{R}$ such that $||p_3|| = 1$. Moreover, we would require that $\text{null}(T) \subset \text{span}(x)^\perp$, since eigenvectors associated to distinct eigenvalues are orthogonal. Therefore, $\text{null}(T) = \text{span}(x)^\perp$, by dimension considerations ($\dim \text{span}(x)^\perp = \dim P_2 - \dim \text{span}(x) = 3 - 1 - 2$).

However, if $p = a_0 + a_2x^2 \in \text{span}(x)^\perp$ then

$$0 = \langle a_0 + a_2x^2, x \rangle = \int_0^1 (a_0 + a_2x^2) x \, dx = \frac{1}{4}(2a_0 + a_2) \implies a_2 = -2a_0$$

so that $p = a_0(1 - 2x^2)$. That is, we have shown that $\text{span}(1 - 2x^2) = \text{span}(x)^\perp \cap \text{null}(T) = \text{null}(T)$, since $\text{null}(T) = \text{span}(x)^\perp$. Then, we would have

$$2 = \dim \text{null}(T) = \dim \text{span}(1 - 2x^2) = 1$$

which is absurd. Hence, our assumption that T is self-adjoint is false.

b) Theorem 6.47 requires that the matrix of T^* (relative to $C \subset W$ and $B \subset V$) is the conjugate transpose of the matrix of T (relative to $B \subset V$ and $C \subset W$) if both B and C are orthonormal. However, the basis $B = C = (1, x, x^2)$ of P_2 is not orthonormal (with respect to the given inner product) so that we are not contradicting Theorem 6.47. If we chose an orthonormal basis of P_2, call it A (obtained by Gram-Schmidt process on $(1, x, x^2)$, for example), then we would find $[T]_A \neq [\overline{T}]_A$.

2. This is false. This would imply that the matrices A, B of two self-adjoint operators T, S (relative to an orthonormal basis) would satisfy

$$(AB)^* = AB,$$

where for a square matrix C we are writing $C^* = C^t$. However, $(AB)^* = B^*A^* = BA$, since T, S are self-adjoint. So, we need to only find two non-commuting self adjoint operators - we can take the following operators on Euclidean space \mathbb{C}^2

$$T : \mathbb{C}^2 \rightarrow \mathbb{C}^2 ; \ x \mapsto \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \ x, \quad S : \mathbb{C}^2 \rightarrow \mathbb{C}^2 ; \ x \mapsto \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \ x$$

You can check that $TS(e_1) \neq ST(e_1)$, where $e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

3. a) Let $T, S \in L(V)$, be self-adjoint operators on V, a real inner product space. Then, the zero operator on V, $Z : V \rightarrow V ; \ v \mapsto 0_v$ is self-adjoint; we have $(T + S)^* = T^* + S^* = T + S$, so that $T + S$ is self-adjoint; if $c \in \mathbb{R}$ then $(cT)^* = cT^* = cT$, so that cT is self-adjoint.

Hence, the set of self-adjoint operators on a real inner product space is a subspace of $L(V)$.

b) If T is self-adjoint operator on the complex inner product space V, then $(\sqrt{-1}T)^* = -\sqrt{-1}T \neq \sqrt{-1}T$. Hence, the set of self-adjoint operators is not closed under scalar multiplication.

4. Let $P \in L(V)$ be such that $P^2 = P$.

(\Rightarrow) Suppose that P is an orthogonal projection. Then, $\text{range}(P) = \text{null}(P)^\perp$. Moreover, the only eigenvalues of P are $\lambda = 0, 1$ (this was proved in a previous HW exercise) and

$$P(v) = v \iff v \in \text{range}(P)$$

(this is true of any projection) so that $\text{range}(P)$ consists of eigenvectors with eigenvalue $\lambda = 1$. Hence, we can find an orthonormal basis (u_1, \ldots, u_k) of $\text{range}(P)$ (using Gram-Schmidt applied to any basis of $\text{range}(P)$) and an orthonormal basis (v_1, \ldots, v_l) of $\text{null}(P)$ (using Gram-Schmidt applied to any basis of $\text{null}(P)$). Then, $(u_1, \ldots, u_k, v_1, \ldots, v_l)$ is an orthonormal basis of V consisting of eigenvectors of P. Hence, if V is a real inner product space then P is self-adjoint, by the Spectral Theorem. If V is complex inner product space then, for any $v \in V$, we can write $v = u + z$, $u \in \text{range}(P), z \in \text{null}(P)$ so that

$$\langle P(v), v \rangle = \langle u, u + z \rangle = \langle u, u \rangle + \langle u, z \rangle = ||u||^2 + 0 \in \mathbb{R}$$

Hence, P is self-adjoint when V is complex inner product space.

(\Rightarrow) Suppose that P is self-adjoint. Then, we have $\text{null}(P) = \text{null}(P^*)$ and

$$\text{range}(P) = \text{null}(P^*)^\perp = \text{null}(P)^\perp \implies V = \text{null}(P) \oplus \text{null}(P)^\perp = \text{null}(P) \oplus \text{range}(P)$$

Since P is self-adjoint then there is a basis of V consisting of orthonormal vectors of P - call it $(u_1, \ldots, u_k, v_1, \ldots, v_l)$, where $P(u_i) = 0_V$ and $P(v_i) \neq 0_V$. Hence, $\dim \text{null}(P) = k$ (i.e. we are saying that the us are an o.n. basis of $\text{null}(P)$) and, since $\text{span}(v_1, \ldots, v_l) \subset \text{null}(P)^\perp = \text{range}(P)$ and $\dim \text{range}(P) = \dim V - \dim \text{null}(P) = (k + l) - k = l$, we see that $\text{span}(v_1, \ldots, v_l) = \text{range}(P)$. Thus, (v_1, \ldots, v_l) is an orthonormal basis of $\text{range}(P)$ consisting of eigenvectors of P with nonzero associated eigenvalues. As we are assuming that $P^2 = P$, we must have that the only eigenvalues of P are $\lambda = 0, 1$, so that the only nonzero eigenvalue is $\lambda = 1$. Hence, for every $u \in \text{range}(P)$ we have $P(u) = u$. Thus, since we can write $v = z + u$, with $z \in \text{null}(P), u \in \text{range}(P)$, we see that

$$P(v) = P(z + u) = P(z) + P(u) = 0_V + u,$$

so that P is a projection onto $\text{range}(P)$ with $\text{null}(P) = \text{range}(P)^\perp$ - hence, it is an orthogonal projection.

5. Let V be an inner product space, take (v_1, \ldots, v_n) an orthonormal basis of V (so that $n \geq 2$). Consider the normal operators $T, S \in L(V)$ defined as follows:

$$T(v_1) = 3v_1, \quad T(v_2) = v_2, \quad T(v_i) = 0_V, \quad i \geq 3,$$

$$S(v_1) = v_2, \quad S(v_2) = -v_1, \quad S(v_i) = 0_V, \quad i \geq 3.$$

Then, the $(n \times n)$ matrices of T, S with respect to the given basis are

$$A = \begin{bmatrix} 3 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 0 & -1 & \cdots & 0 \\ 1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$
Since, $A = \overline{A}^t$, we have $T = T^*, \text{ and as } \overline{B}B^t = \overline{B}^tB$, we have $SS^* = S^*S$, giving that both T and S are normal.

Now, we see that the matrix of $T + S$ is

$$A + B = \begin{bmatrix} 3 & -1 & \cdots & 0 \\ 1 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

and this last matrix is not diagonalisable (so that $T + S$ is not diagonalisable: indeed, the eigenvalues of $T + S$ are $\lambda = 0, 2$ and

$$\text{null}(T + S) = \text{span}(v_3, \ldots, v_n)$$

while the $\lambda = 2$ eigenspace is $\text{span}(v_1 + v_2)$. If $T + S$ were to be diagonalisable then we would need to have two linearly independent eigenvectors with eigenvalue $\lambda = 2$, which obviously can’t be the case. Hence, $T + S$ is not normal (it isn’t diagonalisable).

6. Let $T \in L(V)$ be normal. Then, we must have that $\text{null}(T) = \text{null}(T^*)$ (this is at the top of p.131). Hence, $\text{range}(T) = \text{null}(T^*)^\perp = \text{null}(T)^\perp = \text{range}(T^*)$.

7. There are a couple of ways to proceed:

Proof I) Let B be an orthonormal basis of V consisting of eigenvectors of T (it exists by the Spectral Theorem). Then, we have the matrix of T relative to B is

$$[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of T (counted with multiplicity). Let’s suppose that $\lambda_1 = \ldots = \lambda_k = 0$, and $\lambda_i \neq 0$, for $i > k$. Thus, $\text{dim null}(T) = k$. Now, for any $j \geq 1$ we have

$$[T^j]_B = [T]_B^j = [T]_B = \begin{bmatrix} \lambda_{1}^{j} & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_{n}^{j} \end{bmatrix}$$

and $\lambda_{i}^{j} = 0 \implies \lambda_{r} = 0 \implies r \in \{1, \ldots, k\}$. Hence, $\text{null}(T^j) = \text{span}(v_1, \ldots, v_k) = \text{null}(T)$, for each $j \geq 1$.

Now, since, for each $j \geq 1$,

$$\text{dim range}(T) = \text{dim} V - \text{dim null}(T) = \text{dim} V - \text{dim null}(T^j) = \text{dim range}(T^j)$$

and $\text{range}(T^j) \subset \text{range}(T)$, we see that $\text{range}(T) = \text{range}(T^j)$ follows from $\text{null}(T) = \text{null}(T^j)$.

Proof II) As T is normal then we have $\text{null}(T) = \text{null}(T^*)$ (see p.131). Hence, we have

$$\text{range}(T) = \text{null}(T^*)^\perp = \text{null}(T)^\perp \implies V = \text{null}(T) \oplus \text{range}(T)$$
In particular, \(\text{null}(T) \cap \text{range}(T) = \{0\} \). Let's prove \(\text{null}(T^j) = \text{null}(T) \), for every \(j \geq 1 \), by induction: the case \(j = 1 \) is trivial. Assume the result hold for \(j = s \) - we'll show it holds for \(j = s + 1 \). Since \(\text{null}(T) \subset \text{null}(T^{s+1}) \) always holds, we need only show that \(\text{null}(T) \supset \text{null}(T^{s+1}) \). So, let \(z \in \text{null}(T^{s+1}) \). Then,

\[
0 = T^{s+1}(z) = T(T^s(z)) \implies T^s(z) \in \text{null}(T) \cap \text{range}(T) = \{0\}
\]

\[
\implies z \in \text{null}(T^s) = \text{null}(T), \text{ by induction.}
\]

Hence, \(\text{null}(T^{s+1}) \subset \text{null}(T) \) and the result is proved.

8. The requirements on \(T \) imply that the vectors \((1, 2, 3)\) and \((2, 5, 7)\) are eigenvectors of \(T \). However, with respect to the dot product on \(\mathbb{R}^3 \), we see that

\[
(1, 2, 3) \cdot (2, 5, 7) = 2 + 10 + 21 = 33 \neq 0
\]

so that eigenvectors corresponding to distinct eigenvalues are not orthogonal, contradicting Corollary 7.8.

9. \((\Rightarrow)\) Suppose that \(T \) is self-adjoint. Then, by Proposition 7.1 we see that all eigenvalues of \(T \) are real.

\((\Leftarrow)\) Suppose that all eigenvalues of the normal operator \(T \) are real. Then, by the (complex) Spectral Theorem, we can find an orthonormal basis \(B \) of \(V \) consisting of eigenvectors of \(T \). Hence, we have the matrix of \(T \) relative to \(B \) is

\[
[T]_B = \begin{bmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix}, \text{ where } \lambda_1, \ldots, \lambda_n \in \mathbb{R}.
\]

Then, we have that

\[
[T^*]_B = [T^t]_B = [T]_B \implies T = T^*.
\]

Hence, \(T \) is self-adjoint.

10. Since \(T \) is normal, there is an orthonormal basis \(B \) of \(V \) consisting of eigenvectors of \(T \). Then, we have

\[
[T]_B = \begin{bmatrix}
\lambda_1 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n
\end{bmatrix}, \quad \text{and} \quad [T^i]_B = \begin{bmatrix}
\lambda_1^i & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n^i
\end{bmatrix}.
\]

Hence, if \(T^8 = T^9 \) then we must have

\[
[T^8]_B = \begin{bmatrix}
\lambda_1^8 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n^8
\end{bmatrix} = \begin{bmatrix}
\lambda_1^9 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & \lambda_n^9
\end{bmatrix} = [T^9]_B
\]

so that, for each \(i = 1, \ldots, n \)

\[
\lambda_i^8 = \lambda_i^9 \implies \lambda_i^8(1 - \lambda_i) = 0
\]
In particular, each eigenvalue λ_i is either equal to 1 or 0. Since the eigenvalues of T are real then T is self-adjoint (by previous exercise). Moreover, if we assume that $\lambda_1 = \cdots = \lambda_k = 0$ and $\lambda_{k+1} = \cdots = \lambda_n = 1$ then we have

$$[T]_B = \begin{bmatrix} \lambda_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = [T]_B$$

so that $T^2 = T$.

11. Let T be normal and $B = (v_1, \ldots, v_n)$ be an orthonormal basis of V consisting of eigenvectors of T. Suppose that $[T]_B = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix}$.

Then, by the Fundamental Theorem of Algebra, we can find a (complex) square root of λ_i, for each $i = 1, \ldots, n$. Suppose that $\mu_i^2 = \lambda_i$, for each i. Then, define the operators $S \in L(V)$ as follows:

$$S(v_1) = \mu_1 v_1, \ldots, S(v_n) = \mu_n v_n$$

Then, we have

$$[S^2]_B = \begin{bmatrix} \mu_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mu_n^2 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \lambda_n \end{bmatrix} = [T]_B \implies S^2 = T.$$