
MATH 110, Linear Algebra, Fall 2012

Solution to Midterm 2

1. Let S and T be the linear maps associated to the matrices

(
0 1
0 0

)
and

(
1 0
0 0

)
, respec-

tively. Then ST is the map associated to the zero matrix, i.e., the zero map, whereas TS is equal
to S, and hence not the zero map. In general, since the ranks of T and S are both at least that
of TS, they must be nonzero. But neither can have rank two, or else it would be an isomorphism,
and then ST = 0 would imply that the other was the zero map. Thus their ranks must both be one.

2. Letting {e1, e2, e3} denote the standard basis for R3, the map T sends e1 to (2,−1), e2 to
(1, 0), and e3 to (0, 1). We need to find v1, v2, v3 such that T sends v1 to (1, 0), v2 to (0, 1) and v3
to zero. It’s clear we should take v1 = e2 and v2 = e3. Since T (e1) = 2T (e2) − T (e3), we should
take v3 = e1− 2e2 + e3, so that T (v3) is zero. These three form an independent set since {v1, v2} is
independent, and v3 is not in their span. There are other possible answers - but any choice of v1,
v2, v3 must differ from the above choices by a multiple of (1,−2, 1).

3. The dual space V ∗ of a vector space V is the set of all linear functions from V to F. If
{v1, . . . , vn} is a basis for V , the dual basis {v∗1, . . . , v∗n} is defined by the condition that v∗i (vj) is one
if i = j, and zero otherwise. To find the matrix of T with respect to the basis β, we must compute
T (vi) for each i and express it as a linear combination of the vi. We have T (vi) =

∑
v∗j (vi)vj = vi.

So the ith column of [T ]β is just (0, . . . , 1, . . . , 0), where the 1 is in the ith position; hence the
matrix [T ]β is the identity matrix.

4. (a) False - the equation Ax = 0 has only one solution if and only if left-multiplication by A
is one-to-one. But if m > n it will not be onto, in which case for some b, there will be no solution.

For example, A =

(
1
0

)
and b =

(
0
1

)
.

(b) True - if, as above, multiplication by A is one-to-one, then we have n ≤ m; but if also also
m ≤ n, then m = n and so A is invertible, so for any b there is a unique solution given by x = A−1b.

5. (a) This is linear: for any p(x), q(x) ∈ p2(R), we have f(p+ q) = (p+ q)(1) = p(1) + q(1) =
f(p) + f(q) by definition of addition of polynomials. Similarly, if c ∈ R, f(cp) = (cp)(1) = c(p(1)),
by definition of scalar multiplication in P2(R), and this is equal to cf(p).

This f is clearly onto, so its nullspace will be two-dimensional. Since x− 1 and x2− 1 are both
in N(f) and independent, they form a basis for N(f).

(b) This is also linear - it is the composite of the map p(x) 7→ p(0) and the map p(x) 7→ p′′(x),
both of which are linear (the first one by the same argument as in (a), and the second by calcu-
lus). Alternatively, you could observe that since the second derivative of any quadratic is constant,
this map is actually the same as the second derivative map! Again, it’s clearly onto, since, e.g.,
f(x2) = 1, and 1 is a basis for R. So N(f) is two dimensional. The polynomials 1 and x are both
in N(f) and are independent, so they form a basis for N(f).

6. A and B are similar if there is an invertible matrix Q such that B = Q−1AQ. Suppose this
holds. Then

B2−B+ I = (Q−1AQ)2−Q−1AQ+ I = Q−1AQQ−1AQ−Q−1AQ+Q−1Q = Q−1(A2−A+ I)Q,

so B2 −B + I is similar to A2 −A+ I.


