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“The greatest gift to mankind – the freedom of the mind – is in
great peril. If we lost that we lose everything. The universities are
its greatest bulwark. They are the first to be attacked. The battle
is only just begun.”

Pauline Sperry (1953)



Scaling limits in probability,

with applications to random trees



Probabilistic limits

Let (Xn)n≥1 be a sequence of real-valued random variables.

There are several different notions of convergence for such a
sequence. You may have encountered, for example, convergence in
distribution, convergence in probability and almost sure
convergence. The first of these will be our focus today.

Convergence in distribution (weak convergence):

Xn
d→ X if P (Xn ≤ x) → P (X ≤ x) at every point of continuity of

the limit cumulative distribution function
F (x) = P (X ≤ x) , x ∈ R.
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Example

Suppose that Gn models the number of independent trials with
probability 1/n of success in a single trial until we see the first
success. Gn has a Geometric distribution with success probability
p = 1/n.

Then Gn
n

d→ E as n → ∞, where E ∼ Exp(1) has cumulative
distribution function

F (x) = 1− exp(−x), x ≥ 0.
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Example

Proof.
Fix x ≥ 0. Then

P
(
Gn

n
≤ x

)
= P (Gn ≤ nx) = P (Gn ≤ ⌊nx⌋)

= 1− P (Gn > ⌊nx⌋)

= 1−
(
1− 1

n

)⌊nx⌋

→ 1− exp(−x),

as n → ∞, which is the cumulative distribution function of Exp(1).
(Since the limit cdf is continuous, we need this for every x ≥ 0.) □



Random mathematical objects

Question: what if we want to deal with random mathematical
objects which are not real-valued?



Random mathematical objects
How can we talk about the distribution of a more complicated
random mathematical object? Think: a random vector, a random
function, a random set, a random surface, . . .

The most general set-up is as follows: let (M, d) be a (complete,
separable) metric space. We want to characterise the distribution
of a random element X of M.

If X can take only countably many possible values, it’s
straightforward: for each of those values x , we just need to know
P (X = x). But there are lots of interesting situations in which
there will be uncountably many possibilities.

In general, it turns out that it’s sufficient to know the values of
E [ψ(X )] for a sufficiently rich class of test-functions ψ : M → R.
This seems a bit obscure at first sight, but you may have already
seen a couple of common examples of this idea: generating
functions.
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Examples
Probability generating functions:
For a random variable X taking values in {0, 1, 2, . . .}, let

G (s) = E
[
sX

]
=

∞∑
k=0

pks
k , |s| ≤ 1,

where pk = P (X = k), k ≥ 0. Then G completely determines the
distribution of X .

To see this, let and note that

G (s) = p0 + p1s + p2s
2 + · · · ,

so that we may recover (pk)k≥0 by differentiating:
pk = G (k)(0)/k!.

Moment generating functions (Laplace transforms):
For a random variable X taking values in R+, let

M(θ) = E [exp(−θX )] , θ ≥ 0.

Then M completely determines the distribution of X (via Laplace
inversion).
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Convergence in distribution

For real-valued random variables:

Convergence in distribution (weak convergence):

Xn
d→ X if P (Xn ≤ x) → P (X ≤ x) at every point of continuity of

the limit cumulative distribution function F (x) = P (X ≤ x).

As it stands, this definition doesn’t generalise.

But it turns out to
be equivalent to the following:

E [ϕ(Xn)] → E [ϕ(X )] for every bounded continuous function
ϕ : R → R

which is much more amenable to generalisation.
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Example continued
Indeed, for non-negative random variables, it’s sufficient to have
E [ϕ(Xn)] → E [ϕ(X )] for ϕ(x) = exp(−θx) and all θ ≥ 0. (This is
an instance of the continuity theorem for moment generating
functions.)

Recall: Gn has a Geometric distribution with success probability

p = 1/n. Then Gn
n

d→ E where E ∼ Exp(1) as n → ∞.

Alternative proof.
We have

E [exp(−θGn/n)] = E
[
(e−θ/n)Gn

]
=

1
ne

−θ/n

1− e−θ/n(1− 1/n)

=
1

n(eθ/n − 1) + 1

→ 1

θ + 1
= E [exp(−θE )] .

□



Convergence in distribution

Definition. Let (M, d) be a metric space. Suppose that (Xn)n≥1

and X are random elements of M. Then we say that Xn converges
in distribution (or converges weakly) to X if

E [ϕ(Xn)] → E [ϕ(X )]

for every bounded continuous function ϕ : M → R.

Examples of metric spaces:

1. Rn with the Euclidean distance: random vectors.

2. C ([0, 1],R) with the supremum norm: random continuous
functions.

3. Compact sets in Rn with the Hausdorff distance: random
compact sets.
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What is a scaling limit?

We are given random elements (Xn)n≥1 of a metric space (M, d)
which are “growing” in some sense, and we have a notion of a
scaling operation (i.e. we can “stretch” and “shrink” elements of
M).

A random element X of M is called the scaling limit of (Xn)n≥1 if
there exists some deterministic sequence of real numbers (an)n≥1

such that an → 0 and

an Xn
d→ X

as n → ∞.

We’ve actually already seen an example: we had that if

Gn ∼ Geom(1/n) then 1
nGn

d→ E where E ∼ Exp(1) as n → ∞.
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A prototypical example

The central limit theorem. Let X1,X2, . . . be independent and
identically distributed random variables with E [X1] = 0 and
var(X1) = σ2 ∈ (0,∞). Let Sn =

∑n
i=1 Xi . Then

Sn
σ
√
n

d→ N(0, 1).



The CLT
Section 3.3. SD and Normal Approximation 201 

Figure 5. Distribution of Sn for n = 1,2,4,8,16,32. 
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[Taken from Jim Pitman’s Probability]



The CLT

Some comments:

▶ We say that the scaling limit of (Sn)n≥1 is normally
distributed.

▶ Sn can take both positive and negative values for any n, so
it’s not growing in the simplest sense of the word!

▶ We have var(Sn) = nσ2, so the variance is growing.

Our
normalisation has precisely the effect of making the variance
equal to 1 for every n.

▶ The distribution of the Xi ’s appears only through the
variance. This phenomenon is referred to as universality.
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What if the conditions of the CLT aren’t satisfied?
The classic example is the so-called Cauchy distribution, which has
probability density function f (x) = 1

π(1+x2)
, x ∈ R.

Although the density is symmetric around 0, it doesn’t have a
well-defined expectation (since

∫∞
−∞ |x |f (x)dx = ∞) and therefore

doesn’t have a finite variance either.

Moreover, if X1,X2, . . . are i.i.d. Cauchy random variables then

X1 + X2 + · · ·+ Xn

n
has the same distribution as X1.

(So there’s no chance that (X1 + · · ·+ Xn)/
√
n will converge.)



What if the variance doesn’t exist?
There are several other possible scaling limits for sums of i.i.d.
random variables!

For example, suppose that X takes values in {−1, 0, 1, 2, . . .} and
is such that
▶ E [X1] = 0
▶ P (X1 = k) ∼ ck−α−1 as k → ∞ for c > 0 and α ∈ (1, 2).

Then var(X1) =
∑∞

k=−1 k
2P (X1 = k). We have

∑∞
k=k0

k1−α = ∞
for any k0 ≥ 1, and 1− α ∈ (−1, 0), so the variance is infinite.
(Note: the asymptotic behaviour of the probability mass function
is consistent with the existence of the mean, since −α ∈ (−2,−1)
and so

∑∞
k=k0

k−α <∞.) In this case, it turns out that

Sn
n1/α

d→ S (α)

where S (α) has a so-called α-stable distribution. (Note that we’re
dividing by something much bigger than

√
n!)
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Random continuous functions

Suppose we want to make a random continuous function
F : [0, 1] → R with F (0) = 0.

One nice way to do this is to use a simple symmetric random walk
and interpolate linearly between its steps.

Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Then let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).
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[Picture from Wikipedia, by Morn. Created with Matplotlib.
GFDL, https://commons.wikimedia.org/w/index.php?curid=9398546]



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n. Then

S⌊nt⌋√
n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n. Then

S⌊nt⌋√
n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n.

Then
S⌊nt⌋√

n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n. Then

S⌊nt⌋√
n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n. Then

S⌊nt⌋√
n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



Random continuous functions
Let X1,X2, . . . ,Xn be i.i.d. with P (X1 = 1) = P (X1 = −1) = 1/2,
and let Sk =

∑k
i=1 Xi . Let

Fn(t) = S⌊nt⌋ +
(
t − ⌊nt⌋

n

)
X⌊nt⌋+1, for t ∈ [0, 1).

What happens as n → ∞?

By the CLT, we have
S⌊nt⌋√
⌊nt⌋

d→ N(0, 1) for each t ∈ [0, 1], so it

seems reasonable to rescale Fn by 1/
√
n. Then

S⌊nt⌋√
n

d→ N(0, t).

Notice that
∣∣∣(t − ⌊nt⌋

n

)
X⌊nt⌋+1

∣∣∣ ≤ 1 so if we divide by 1/
√
n this

term becomes negligible as n → ∞.

We also have that S⌊nt1⌋,S⌊nt2⌋ − S⌊nt1⌋, . . . ,S⌊ntr ⌋ − S⌊ntr−1⌋ are
independent for any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.



So we’re looking for a random continuous function F which is such
that

▶ F (0) = 0

▶ F (t)− F (s) ∼ N(0, t − s) for any 0 ≤ s < t ≤ 1

▶ F (t1),F (t2)− F (t1), . . . ,F (tr )− F (tr−1) are independent for
any 0 ≤ t1 < t2 < · · · < tr ≤ 1 and any r ≥ 2.

It turns out that there is a unique random function satisfying these
conditions: Brownian motion.
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Brownian motion



Scaling limit
Theorem. As n → ∞,(

Fn(t)√
n
, 0 ≤ t ≤ 1

)
d→ (F (t), 0 ≤ t ≤ 1),

where F is a Brownian motion.

Recall: this means that for any bounded continuous functional
ϕ : C ([0, 1],R) → R we have

E
[
ϕ(Fn/

√
n)
]
→ E [ϕ(F ))]

as n → ∞.

Bounded continuous functionals capture all sorts of different
things. For example, for f ∈ C ([0, 1],R), we could take

▶ ϕ(f ) = exp(−max0≤t≤1 f (t))

▶ ϕ(f ) = sin(f (1/4)f (1/2)f (3/4)).
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Universality

It turns out that this isn’t only true for simple random walk. It
works also for any random walk with independent identically
distributed step-sizes as long as they have mean 0 and variance 1.
(And if they have variance σ2, we just get a constant scaling factor
σ.)



Brownian motion is weird and wonderful!

Let B be a Brownian motion. The following statements are true
with probability 1:

▶ B is Hölder continuous of exponent α (i.e.
|B(t)− B(s)| ≤ C |t − s|α for constants C and α) for every
α < 1/2 but there is no interval on which it is Hölder
continuous of exponent α ≥ 1/2.

▶ In fact, B is nowhere differentiable.

▶ The zero set Z = {t : B(t) = 0} has “length” (Lebesgue
measure) 0.

▶ Z is a perfect set: it is closed and has no isolated points. (Z
is therefore uncountable.)

▶ Z is a random fractal set, with fractal dimension equal to 1/2.
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Brownian motion is easy to calculate with

Brownian motion sits at the intersection of many different classes
of stochastic processes: it’s a Markov process, it’s a Gaussian
process and it’s a martingale. So there are many different tools
and techniques available for its study.

This means that even if what we’re interested in is actually a fact
about random walks (for example, how much time the random
walk spends above the x-axis), it’s often much easier to do those
calculations in the continuum and use the answer as an
approximation. To continue the example, the amount of time in
[0, 1] that a Brownian motion spends above the x-axis has density

1

π
√
x(1− x)

, 0 < x < 1.
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Brownian motion is useful!

There are many real-world applications in which random walks or
Brownian motion are used as a model. For example,

▶ stock prices

▶ animal movements

▶ genetic evolution in a population

▶ particle motion in physics,

and as a component part of many many more!

There are also deep links to the theory of PDE’s.
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Trees

I now want to move on to talk about something which looks
completely unrelated: trees.

Mathematically, a tree is a connected acyclic graph.

But tree-structures are also ubiquitous in nature.
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[“Lichtenberg figure in block of plexiglas” by Bert Hickman.
(Licensed under Attribution via Wikimedia Commons.)]



[“Unique snow flake” by Pen Waggener - Flickr: Unique.
(Licensed under CC BY 2.0 via Wikimedia Commons.)]



[“Yarlung Tsangpo river, Tibet” by NASA, http://photojournal.jpl.nasa.gov/catalog/PIA03708.
(Licensed under Public Domain via Wikimedia Commons.)]



[http://ets.lib.uchicago.edu/ARTFL/OLDENCYC/images.
(Licensed under Public Domain via Wikimedia Commons.)]



[“Waldburg Ahnentafel”, http://www.ahneninfo.com/de/ahnentafel.htm.
(Licensed under Public Domain via Wikimedia Commons.)]



A mathematical abstraction: ordered trees

Consider a rooted ordered tree on n vertices (“ordered” means that
the left-to-right ordering matters).

Example: n = 7

1 1 1 1 1 2 1 2 1

1 21 1

1

;



Random trees

The set Tn of ordered trees on n vertices is one of the (many!)
combinatorial families enumerated by the Catalan numbers:

|Tn| =
1

n + 1

(
2n
n

)
.

Using Stirling’s approximation, we get that

|Tn| ∼
4n

n3/2
√
π

as n → ∞.

Let Tn be a tree picked uniformly at random from Tn.

Question: What can we say about the properties of Tn as n gets
large?
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Things we might want to know

▶ What is the largest distance between the root and another
vertex?

▶ What is the diameter of the tree? (i.e. what is the length of
the longest path between two points in the tree?)

▶ How many vertices are there at distance d from the root?

▶ How many leaves (i.e. vertices with only one neighbour) are
there?

▶ How many vertices have two neighbours? Or three? Or more?

Because the tree is random, all of these quantities are random
variables with (complicated) distributions which depend on n.

Can we take a limit as n → ∞, in a sensible way?

It’s useful to have a way of “getting our hands” on Tn. We do this
via a functional encoding.
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The contour function is a sort of “expanded” version of the tree.



A bijection

Indeed, there is a bijection between the set Tn of ordered trees
with n vertices and the set Wn of discrete walks with 2(n − 1)
steps in {−1,+1} which start and end at 0 and remain
non-negative in between.

We’ll call these excursions.

In fact, a uniformly random element of Wn is the same as a simple
random walk conditioned to start and end at 0 and remain
non-negative in between. To see this, we just need to observe that
every particular sequence of +1 and −1 steps which satisfies the
conditions has the same probability for the random walk.

If we ignore the conditioning, then we know that we get Brownian
motion as the scaling limit of this path.
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Conditioning Brownian motion
The Brownian motion path is made up of excursions away from 0:

If we take one of these excursions conditioned to have length 1, we
get a standard Brownian excursion, (e(t), 0 ≤ t ≤ 1).
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Scaling limit of a random walk excursion

Let (C (t), 0 ≤ t ≤ 2(n − 1)) be a simple random walk excursion of
2(n − 1) steps, linearly interpolated.

Theorem.
As n → ∞,

1√
2n

(
C (2(n − 1)s), 0 ≤ s ≤ 1

)
d→ (e(s), 0 ≤ s ≤ 1).
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Scaling limit for the random tree
This suggests that there should be some sort of scaling limit for
the tree, which is somehow encoded by the Brownian excursion.

This is indeed true, and it’s called the Brownian continuum random
tree. It was discovered by David Aldous, who was a member of
faculty at Berkeley from 1979 until his retirement in 2018.
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Scaling limit for the random tree

In order to give a (slightly informal) definition of the Brownian
continuum random tree, we need to think about how to get back
from excursions to trees.



From excursions back to trees



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together...
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Now put glue on the underside of the excursion and push the two
sides together...



From excursions back to trees

Now put glue on the underside of the excursion and push the two
sides together to get a tree.



Brownian continuum random tree
If you do this gluing operation to a Brownian excursion, you get
the Brownian continuum random tree.
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Brownian continuum random tree
If you do this gluing operation to a Brownian excursion, you get
the Brownian continuum random tree.

[Picture by Igor Korchemski]



Scaling limit theorem
Theorem (Aldous).
As n → ∞,

1√
2n

Tn
d→ T ,

where T is the Brownian continuum random tree.

What does this convergence capture? It’s particularly good for
thinking about distances in the tree.

For example, the largest distance from the root to another vertex
in Tn is given by the maximum of the corresponding random walk
excursion. This converges in distribution, on rescaling, to the
equivalent quantity for T , which is the maximum of the Brownian
excursion, and has cumulative distribution function

P
(

max
0≤t≤1

e(t) ≤ x

)
= 1− 2

∞∑
k=1

(4x2k2− 1) exp(−2x2k2), x ≥ 0.
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Brownian continuum random tree

Like Brownian motion, the Brownian continuum random tree is a
fascinating mathematical object! In particular, it is a random
fractal with fractal dimension 2, and has lots of nice distributional
properties.



Universality
It turns out that many different families of “uniform-like” trees
have the Brownian continuum random tree as their scaling limit.

It
also shows up as a building block in the scaling limits of other
more complicated random discrete structures, for example random
graphs.

[Picture by Nicolas Broutin]
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Universality
It turns out that many different families of “uniform-like” trees
have the Brownian continuum random tree as their scaling limit. It
also shows up as a building block in the scaling limits of other
more complicated random discrete structures, for example random
graphs or random planar maps.

[Picture by Jérémie Bettinelli]



Random trees and random graphs
Lots of my recent work has focussed on the scaling limits of
various models of random trees and random graphs, particularly
those with hubs (which are related to the stable distributions I
mentioned earlier).

[Picture by Igor Kortchemski]



Random trees and random graphs
Lots of my recent work has focussed on the scaling limits of
various models of random trees and random graphs, particularly
those with hubs (which are related to the stable distributions I
mentioned earlier).

[Picture by Delphin Sénizergues]



Random trees and random graphs

Another nice example is the scaling limit of the minimum spanning
tree of the complete graph. Here, the scaling turns out to be n1/3

rather than
√
n, and the fractal dimension is 3 almost surely.

[Picture by Louigi Addario-Berry]



Scaling limits are everywhere!

Scaling limits turn up all over probability theory. There are some
particularly famous examples in the context of percolation and
other models coming from statistical mechanics.

[L: Picture by James Martin; R: “The fractal dimension of the percolation by invasion cluster at the percolation
threshold is 91/48=1.89” by Alexis Monnerot-Dumaine. (Licensed under Attribution via Creative Commons.)]



Thank you for your attention!


