Math 185 - Spring 2015 - Homework 1 - Solution sketches

Hard copy due: Tuesday, February 3 at 11am.

Notation. \(\mathbb{D} = \{ z \in \mathbb{C} : |z| < 1 \}, \quad \partial \mathbb{D} = \{ z \in \mathbb{C} : |z| = 1 \}. \)

Problem 1. For all \(z \in \mathbb{C}\setminus\{0\} \) there exists a unique \(w \in \mathbb{C}\setminus\{0\} \) such that \(zw = 1 \), which we denote by \(\frac{1}{z} \) or \(z^{-1} \). Given \(z = x + iy \in \mathbb{C}\setminus\{0\} \), compute the real and imaginary parts of \(z^{-1} \).

If \(z = x + iy \) then \(z^{-1} = \frac{x}{x^2 + y^2} + i\frac{-y}{x^2 + y^2} \).

Problem 2. Describe the following sets in \(\mathbb{C} \) geometrically and draw a picture of each.
- \(\{ z \in \mathbb{C} : |z - a| = |z - b| \} \), where \(a, b \in \mathbb{C} \),
- \(\{ z \in \mathbb{C} : \text{Re} (z) > 0 \} \),
- \(\{ z \in \mathbb{C} : \text{Re} (az + b) > 0 \} \), where \(a, b \in \mathbb{C} \),
- \(\{ z \in \mathbb{C} : |z| = \text{Re} (z) + 1 \} \).

I’ll describe the sets as subsets of the plane. The first set is the line of points equidistant to \((a_1, a_2)\) and \((b_1, b_2)\). The second set is the right-half plane. The third set is the set of points such that \(a_2y < a_1x + b_1 \) (also a half plane). The fourth set is the parabola \(y^2 = 2x + 1 \).

Problem 3. Define \(f : \mathbb{C} \to \mathbb{C} \) by \(f(z) = \bar{z} \). Use the definition of the derivative to show that \(f \) is not holomorphic at any point.

Note \(f(z+h) - f(z) = \frac{h}{\bar{h}} \). If we send \(h \to 0 \) along the real axis we get \(1 \). If we send \(h \to 0 \) along the imaginary axis we get \(-1 \). Thus the limit as \(h \to 0 \) does not exist.

Problem 4. Fix \(w \in \mathbb{D} \) and define the Blaschke factor
\[
F(z) = \frac{w - z}{1 - \bar{w}z} \quad \text{for} \quad z \in \mathbb{D}.
\]

Show the following:
- \(F : \mathbb{D} \to \mathbb{D} \), and \(F : \partial \mathbb{D} \to \partial \mathbb{D} \),
- \(F \) is a bijection on \(\mathbb{D} \),
- \(F \) is holomorphic on \(\mathbb{D} \).

Writing \(z = re^{i\theta} \) we find
\[
F(z) = e^{i\theta} \frac{w_0 - r}{1 - \bar{w}_0 r}, \quad \text{where} \quad w_0 = e^{-i\theta} w.
\]

As \(|e^{\pm i\theta}| = 1 \), we see that without loss of generality we may assume \(z \in \mathbb{R} \).

Now for \(z \in \mathbb{R} \) the statement \(|F(z)|^2 \leq 1 \) can be seen to be equivalent to
\[
|w|^2 + z^2 - 2z\text{Re} (w) \leq 1 + z^2 |w|^2 - 2z\text{Re} (w),
\]
or equivalently
\[
|w|^2 (1 - z^2) \leq 1 - z^2.
\]
This inequality holds (strictly) when \(|z| < 1 \), while equality holds if \(|z| = 1 \).

To see that \(F \) is a bijection we note that it is its own inverse.

To see that \(F \) is holomorphic we note that it is a quotient of holomorphic functions and the denominator is never zero, since \(|\bar{w}z| = |w| \cdot |z| < 1 \).

Problem 5. Let \(f : \mathbb{C} \to \mathbb{C} \) and define \(u, v : \mathbb{R}^2 \to \mathbb{R} \) by
\[
u(x, y) = \text{Re} [f(x + iy)] , \quad v(x, y) = \text{Im} [f(x + iy)].
\]
Suppose \(f \) is holomorphic at some \(z_0 = x_0 + iy_0 \in \mathbb{C} \).
Use the definition of the derivative to show that
\[f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial u}{\partial y}(x_0, y_0) \quad \text{and} \quad f'(z_0) = -i\frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial u}{\partial x}(x_0, y_0). \quad (*) \]

Use (*) to derive the Cauchy–Riemann equations.

To show (*) we write out the difference quotients, first choosing \(h \) real and second choosing \(h \) purely imaginary. To get the Cauchy–Riemann equations one equates the real and imaginary parts of the two formulas for \(f'(z_0) \).

Problem 6. Suppose \(f : \mathbb{C} \to \mathbb{C} \) is holomorphic. Show the following:
- if \(\text{Re} (f) \) is constant, then \(f \) is constant,
- if \(\text{Im} (f) \) is constant, then \(f \) is constant,
- if \(|f| \) is constant, then \(f \) is constant.

Use the Cauchy–Riemann equations.

Problem 7. Let \(\{a_n\}_{n=1}^N \) and \(\{b_n\}_{n=1}^N \) be finite sequences in \(\mathbb{C} \), and define \(B_k = \sum_{n=1}^k b_n \), with the convention \(B_0 = 0 \). Prove the summation by parts formula:
\[
\sum_{n=M}^N a_n b_n = a_N B_N - a_M B_{M-1} - \sum_{n=M}^{N-1} (a_{n+1} - a_n) B_n.
\]

Problem 8. Show the following:
- the power series \(\sum_n n z^n \) does not converge for any \(z \in \partial \mathbb{D} \),
- the power series \(\sum_n \frac{1}{n} z^n \) converges for all \(z \in \partial \mathbb{D} \),
- the power series \(\sum_n \frac{1}{n} z^n \) converges for all \(z \in \partial \mathbb{D} \) except for \(z = 1 \).

The first series diverges by the “divergence test”. The second series converges absolutely by comparison with \(\sum_n \frac{1}{n} \). For the series, divergence at \(z = 1 \) is well known. For \(z \neq 1 \) we sum by parts and use the fact that for \(z \neq 1 \) we can write
\[
\left| \sum_{k=1}^n z^k \right| = \left| \frac{z - z^{n+1}}{1 - z} \right| \leq \frac{2}{|1 - z|}.
\]

This yields
\[
\left| \sum_{n=M}^N \frac{z^n}{n} \right| = \left| \frac{1}{N} \frac{z - z^{N+1}}{1 - z} - \frac{1}{M} \frac{z - z^M}{1 - z} - \sum_{n=M}^{N-1} \frac{-1}{n(n+1)} \frac{z - z^{n+1}}{1 - z} \right|
\leq \frac{2}{|1 - z|} \left(\frac{1}{N} + \frac{1}{M} + \sum_{n=M}^{N-1} \frac{1}{n^2} \right).
\]

Since \(\sum_n \frac{1}{n^2} \) converges, the quantity above tends to zero as \(M, N \to \infty \).