(1) (5 points) Let γ be a cycle of generalized eigenvectors. Prove that the vectors in γ are linearly independent.
(2) (5 points) Let γ be a cycle of generalized eigenvectors for a linear transformation T. Show that the $\operatorname{Span}(\gamma)$ is invariant under T.
(3) (5 points) Let A be a matrix over \mathbb{C} whose only eigenvalue is $\lambda=0$. Prove that A is nilpotent.
(4) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$$
[A]_{\beta}=\left(\begin{array}{cccccc}
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(5) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$$
[A]_{\beta}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 3
\end{array}\right)
$$

(6) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$$
[A]_{\beta}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 1 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

