- (1) (5 points) Let γ be a cycle of generalized eigenvectors. Prove that the vectors in γ are linearly independent.
- (2) (5 points) Let γ be a cycle of generalized eigenvectors for a linear transformation T. Show that the Span(γ) is invariant under T.
- (3) (5 points) Let A be a matrix over \mathbb{C} whose only eigenvalue is $\lambda = 0$. Prove that A is nilpotent.
- (4) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$\left(\right)$

(5) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$[A]_{\beta} =$	$\binom{1}{1}$	0	0	0	0	0)
	0	1	1	0	0	0
	0	0	1	0	0	0
	0	0	0	3	1	0
	0	0	0	0	3	1
	$\sqrt{0}$	0	0	0	0	3/

(6) (5 points) Compute the characteristic polynomial of A and determine how many eigenvectors it has given the following Jordan form,

$[A]_{eta} =$	$\left(1\right)$	0	0	0	0	0)
	0	2	1	0	0	0
	0	0	2	0	0	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}$
	0	0	0	2	0	0
	0	0	0	0	0	1
	$\sqrt{0}$	0	0	0	0	0/